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for studies separately within each design. The last equa-
tion treats the study-type averages as random effects from 
a normal distribution centered at the global average. The 
hierarchical model assumes that the �

k
s are exchangeable 

and conditional on �  and � 2, whereas a traditional approach 

would have assumed that they are � xed and independent 
parameters.3,54

Using published guidance3,54 to select priors that pro-
vide no advantage for 1 treatment strategy or study type over 
another (Table), we obtain a posterior inference that shows no 

Figure 6. Hierarchical model. At the 
individual study level in the bottom 
row, the parameters include ORi(k) and 
variances s2 from each study i=1,…, 18; 
in the middle level, the mean study-type 
effects � i and variances � k

2 from each 
study type k=1,…, 3; and, in the top 
level, the overall treatment effect � and 
its variance � 2. OR indicates odds ratio. 
Adapted with permission from John 
Wiley and Sons.30 Authorization for this 
adaptation has been obtained both from 
the owner of the copyright in the original 
work and from the owner of copyright in 
the translation or adaptation.

Figure 7. Mortality after multivessel or culprit vessel-only intervention for ST-segment–elevation myocardial infarction. Information 
sources segregated by study type are plotted on the odds ratio (OR) scale and on the � scale, which is equivalent to log e(OR). Data from 
randomized controlled trials (red), which are represented by a bell-shaped curve to show the distribution of all possible ORs, tend to 
favor the strategy of multivessel intervention, whereas data from matched cohort studies (purple) and from the unmatched observational 
studies (blue) tend to favor the strategy of culprit vessel-only intervention. The �nal synthesis (black), which combines the data fr om 
all studies and generates the posterior median OR and 95% Bayesian credible interval (data labels), suggests no plausible difference 
in mortality rates after a strategy of multivessel or culprit artery-only intervention at the time of primary intervention. All curves ar e 
normalized to 1. Adapted with permission from John Wiley and Sons. 30 Authorization for this adaptation has been obtained both from the 
owner of the copyright in the original work and from the owner of copyright in the translation or adaptation.
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credible difference in the end point of all-cause mortality after 
culprit artery-only compared with multivessel PCI (OR, 1.10; 
95% BCI, 0.74–1.51), as shown in Figure 7. When we use 
priors that weight RCTs over observational studies by a factor 
that ranges from 1 to 5, we obtain an estimate closer to 1.00 
(OR, 1.05; 95% BCI 0.64–1.48).30

The overall findings support the decision made by mem-
bers of the writing committee to replace the old Class III 
prohibition against nonculprit PCI17 with a new Class IIb rec-
ommendation allowing nonculprit artery PCI.55 The process of 
synthesizing RCT and observational evidence does not change 
the overall estimate of the mortality difference between the 
different strategies but rather increases the confidence that no 
difference likely exists.3

Conclusions
Analogous to making a clinical diagnosis, deciding what 
works in clinical investigation can be challenging. Bayesian 
analysis quantifies the probability that a study hypothesis is 
true when it is tested with new data. Although P values may 
ensure that trial results in which we are 95% confident are 
correct 95% of the time in the long run,31 P values cannot cap-
ture the effect size or the evidential meaning of an outcome.6 
Bayesian analysis replaces the dependence on a single number 
and moves the interpretation of trial results into the world of 
probabilities based on prior knowledge.6

By giving writing committees tools for dealing with the 
uncertainty of trial results, Bayesian methods are useful for 
analyzing observational studies,56 mega-trials,6 and noninfe-
riority trials by treating H

0
 and H

A
 equivalently by accepting 

the null rather than failing to reject it. Because many experts 
rightly demand a higher threshold than 2 SEs in post hoc exer-
cises like meta-analyses, Bayesian methods may raise the bar 
for declaring that a finding is significant.31

In presenting vignettes in this review that illustrate the use 
of Bayesian approaches for the analysis of trial results, we 
have tried to strike a balance between the past and the present, 
between the practical and the academic, and between com-
mon sense and the pedantic, in the hope that we can move the 
search for what works in healthcare from the realm of chance 
to the science of probability.

Disclosures
None.
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Supplemental Appendix A: Bayesian Approach to Diagnostic Testing 
 
To show how Bayesian analysis has become a crucial part of clinical reasoning,1 we start 

with a familiar example. A common question is: What is the chance that a patient has a disease 
when he or she has an abnormal result on screening test that is accurate 80% to 90% of the time? 
To put the question into the context of cardiovascular medicine, we ask: What is the predictive 
value of an abnormal stress test that has a sensitivity of 85% and a specificity of 80% in a 
healthy 40-year old person who has a 1% prior probability of having coronary artery disease 
(CAD)? The answer is 4%. This result may seem low, but it is based on a straightforward 
application of Bayes rule2, 3: 

𝑝𝑝(𝐻𝐻1|𝑦𝑦) =  
𝑝𝑝(𝐻𝐻1) ∙ 𝑝𝑝(𝑦𝑦|𝐻𝐻1) 

𝑝𝑝(𝑦𝑦) =  
𝑝𝑝(𝐻𝐻1) ∙ 𝑝𝑝(𝑦𝑦|𝐻𝐻1)

𝑝𝑝(𝐻𝐻1) ∙ 𝑝𝑝(𝑦𝑦|𝐻𝐻1) +  𝑝𝑝(𝐻𝐻0) ∙ 𝑝𝑝(𝑦𝑦|𝐻𝐻0), 

where 𝐻𝐻1 is the presence of obstructive CAD, 𝐻𝐻0 the absence of disease, 𝑦𝑦 is an abnormal stress 
test, 𝑝𝑝(𝑦𝑦) is the probability of getting a true or false positive test result, and 𝑝𝑝(𝐻𝐻1|𝑦𝑦) is the 
probability of having CAD given an abnormal stress test 𝑦𝑦.*  

 
Plugging a value of 0.01 for the prior probability of having CAD 𝑝𝑝(𝐻𝐻1), 0.99 for the 

prior probability of not having CAD 𝑝𝑝(𝐻𝐻0), 0.85 for the sensitivity 𝑝𝑝(𝑦𝑦|𝐻𝐻1) of stress testing, and 
0.20 (ie, 1 – specificity) for the false positive rate of stress testing 𝑝𝑝(𝑦𝑦|𝐻𝐻0) into Bayes’ formula 
yields a posterior probability 𝑝𝑝(𝐻𝐻1|𝑦𝑦) of 0.041. 

 
To better understand how Bayesian analysis improves diagnostic thinking, we simply 

calculate that for every 10,000 low-risk patients, only 100 will have obstructive CAD 
(0.01.10,000). Of 10,000 low-risk patients undergoing screening stress tests, 85 with CAD will 
have true positive tests (0.85.100) and 1980 without CAD will have false positive tests 
(0.20.9900). When we compute the posterior probability 𝑝𝑝(𝐻𝐻1|𝑦𝑦) by dividing the number of true 
positives 𝑝𝑝(𝐻𝐻1) ∙ 𝑝𝑝(𝑦𝑦|𝐻𝐻1) by the sum of true positives 𝑝𝑝(𝐻𝐻1) ∙ 𝑝𝑝(𝑦𝑦|𝐻𝐻1) plus false positives 
𝑝𝑝(𝐻𝐻0) ∙ 𝑝𝑝(𝑦𝑦|𝐻𝐻0), we obtain 85/(85+1980), or 4.1%, which agrees with the result above and 
illustrates how the number of false positives overwhelms the number of true positives. To 
improve the accuracy of stress testing in the clinical setting and reduce the number of false 
positives, many experts include factors like maximum exercise time and the degree of ST 
depression.4, 5 

 
Using a similar line of thinking for an asymptomatic patient who has received a drug-

eluting stent (DES) and has a 5% risk of restenosis,6 we calculate that the positive predictive 
value of an abnormal screening stress test is 18%. This surprising result is obtained by setting the 
risk of restenosis of 5% as the prior probability 𝑝𝑝(𝐻𝐻1). In a theoretical sample of 1000 patients 

                                                 
* | is the symbol from probability theory that denotes conditional, or “given,” as in 𝑝𝑝(𝐻𝐻1|𝑦𝑦), 
which refers to the presence of disease 𝐻𝐻1 given a positive test result 𝑦𝑦. 
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after DES implantation, 50 (0.05.1000) will have restenosis, 950 (1000 – 50) will not, 43 
(0.85·50) will have a true positive test result, and 190 (0.20·950) will have a false positive test 
result. Substituting 50, 950, 43, and 190 for 𝑝𝑝(𝐻𝐻1), 𝑝𝑝(𝐻𝐻0), 𝑝𝑝(𝐻𝐻1) ∙ 𝑝𝑝(𝑦𝑦|𝐻𝐻1), and 𝑝𝑝(𝐻𝐻0) ∙ 𝑝𝑝(𝑦𝑦|𝐻𝐻0) 
in Bayes’ Equation yields a posterior probability 𝑝𝑝(𝐻𝐻1|𝑦𝑦) of 0.18, which is same as that obtained 
by dividing the true positives by the sum of true and false positives, 43/(43+190).  

 
Similar examples discussed during the revision of the 2011 PCI guideline prompted 

members of the writing committee replace an older recommendation for routine screening stress 
testing with a Class III (“no benefit”) recommendation: “Routine periodic stress testing of 
asymptomatic patients after PCI without specific clinical indications should not be performed 
(Level of Evidence: C).”7 
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Supplementary Appendix B: 
Doing Bayesian Analysis on Your Computer Using Open-Source Software 
 
Running OpenBUGS and [R] On a Macintosh Computer Using a Native Windows 
Platform (Preferred)3: 

1. Because OpenBUGS and WinBUGS are Windows-based, you will need to be able to run 
Windows programs on your Mac. First, download and open WINE (Windows Not an 
Emulator). Get the file WineBottlerCombo_1.6.1.dmg, or latest version compatible with 
your operating system (OS), from winebottler.kronenberg.org. 

2. To run WINE in an older Mac OS environment such as OS X El Capitan version 10.11.6 
or earlier, download and run XQuartz 2.7.11. Get the file from xquartz.org. To run WINE 
in OS X Sierra version 10.12.1, you do not need XQuartz. 

3. If you have trouble loading WINE, check the security settings on your Mac. Under the 

Apple logo, select System Preferences… and click on Security and Privacy. Under the 
General menu, select Allow apps downloaded from … App store and identified developers. If 
this fails, go to the Applications folder, open the Utilities folder, and double-click on 
Terminal. At the prompt, type sudo spectl –master-disable, and then find under the 
General pane in Security and Privacy a new radio button Anywhere. After you 
successfully open WINE, remember to go back into Terminal and reset the security 
settings by typing sudo spctl –master-enable.  

4. To perform statistical analyses using [R], you will need to load R-3.0.3-win.exe. To run 
[R] using WINE on your Mac, download the Windows version of the file from cran.r-
project.org. You can get any of the previous versions by clicking on the “Old” button and 
scrolling, for example, to R-3.0.3.pkg 2014-03-06 16:47 66M.  

5. To edit code in [R], you need an editing program like Tinn-R. You can get Tinn-
R_3.0.3.6_setup.exe from https://sourceforge.net/projects/tinn-r/files/Tinn-R 
setup/3.0.3.6/.  

6. To get the [R] code in this Supplemental Appendix to work, you will need to copy it to 
Tinn-R or similar program, save it as a file on your computer and access it directly from 
[R]. Copying and pasting from the Supplemental Appendix directly into [R] will 
probably not work.  

7. To find [R] on your Mac, click on the Wine icon, which is the shape of a tiny wineglass 
and may be in your applications folder but should be moved to the task bar for easy 
accessibility. In the Wine submenu on the menu bar, scroll down to File Manager. 
Double click on the folder Program Files, double click on the folder R, double click on 
the folder R 3.0.3, double click on folder bin, double click on folder i386, double click 
on file Rgui.exe, and watch [R] start. 

8. To perform Markov chain Monte Carlo (MCMC) modeling, get and run 
OpenBUGS323setup.exe or the latest version compatible with your OS. Download the 
file from www.openbugs.net/w/Downloads. Under the Wine icon on the menu bar, scroll 

https://sourceforge.net/projects/tinn-r/files/Tinn-R%20setup/3.0.3.6/
https://sourceforge.net/projects/tinn-r/files/Tinn-R%20setup/3.0.3.6/
http://www.openbugs.net/w/Downloads
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down to File Manager. Double click on the folder Program Files, double click on the 
folder OpenBUGS, double click on the folder OpenBUGS323, double click on file 
OpenBUGS.exe, and watch OpenBUGS start.  

9. In [R], scroll down from File to Change dir… to browse for a folder that you intend to 
use for data files, code files and figures. 

10. To run OpenBUGS in the background with [R], you must install the package BRugs. To 
do this, open both [R] and OpenBUGS. In [R], scroll down from the Packages to Install 
package(s)… and select CRAN mirror USA (CA 1) or any other familiar source. Then, 
scroll down from Packages to Load package… and select BRugs. In [R], type 
install.packages(“BRugs”) and then type library(BRugs). In future [R] 
sessions, simply type library(BRugs).  

11. To run meta-analyses, type install.packages(“meta”) and then type 
library(meta). In future [R] session, simply type library(meta). 

12. This seemingly incoherent combination of manufacturer and software is recommended, 
because Macintosh computers are arguably the most reliable computers for the consumer, 
and the Windows versions of BUGS and [R] are discussed more extensively than any 
other approach in the recommended textbooks.1, 8-11 

 
On a PC (Easier)3: 

1. To perform statistical analyses using [R], get and run R-3.0.3-win.exe. Download the 
Windows version of the file from cran.r-project.org. You can get any of the previous 
versions by clicking on the “Old” button and scrolling, for example, to R-3.0.3.pkg 2014-
03-06 16:47 66M.  

2. To edit code in [R], run Tinn-R_3.0.3.6_setup.exe. Download the file from 
https://sourceforge.net/projects/tinn-r/files/Tinn-R setup/3.0.3.6/.  

3. To get the [R] code in this Supplemental Appendix to work, you will need to copy it to 
Tinn-R or similar program, save it as a file on your computer and access it directly from 
[R]. Copying and pasting from the Supplemental Appendix into [R] will not work. 

4. To run Markov chain Monte Carlo (MCMC) modeling, get and run 
OpenBUGS323setup.exe or latest version compatible with your OS. Download the file 
from www.openbugs.net/w/Downloads. In the Wine submenu on the menu bar, scroll 
down to File Manager. Double click on the folder Program Files, double click on the 
folder OpenBUGS, double click on the folder OpenBUGS323, double click on file 
OpenBUGS.exe, and watch OpenBUGS start.  

5. In [R], scroll down from File to Change dir… to browse for a folder that you intend to 
use for data files, code files and figures. 

6. To run OpenBUGS in the background with [R], you must install the package BRugs. To 
do this, open both [R] and OpenBUGS. In [R], scroll down from the Packages to Install 
package(s)… and select CRAN mirror USA (CA 1) or any other familiar source. Then, 
scroll down from Packages to Load package… and select BRugs. In [R], type 

https://sourceforge.net/projects/tinn-r/files/Tinn-R%20setup/3.0.3.6/
http://www.openbugs.net/w/Downloads
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install.packages(“BRugs”) and then type library(BRugs). In future [R] 
sessions, simply type library(BRugs).  

7. To run meta-analyses, type install.packages(“meta”) and then type 
library(meta). In future [R] session, simply type library(meta). 

 
On a Mac using JAGS and [R] for Mac (An Emerging Approach)12: 

1. Go to the Sourceforge.net site and follow instructions for downloading and installing 
JAGS that is compatible with your OS. 

2. To perform statistical analyses using [R], get and run R for Mac from https://cran.r-
project.org/bin/macosx/. 

3. To run JAGS in [R], you must download and rjags_4-3 from Sourceforge.net and install.  
4. This combination of hardware and software is gaining wider use,13-15 but is not as widely 

cited as the Windows-based approaches. 
 

Supplementary Appendix B—Example:  
Mixed Treatment Comparisons for Left Main Coronary Artery Disease16, 17  
 A network meta-analysis allows practitioners to compare treatments indirectly when 
direct comparisons do not exist. For example, no trial has directly compared percutaneous 
coronary intervention (PCI) with medical therapy (MT) to improve survival in patients with 
unprotected left main CAD (ULMCAD), but the 2011 ACC/AHA revascularization guidelines 
contained a Class IIa recommendation to use PCI to improve survival in patients with 
ULMCAD.7, 18 The recommendation was based on the reasoning that:  
  • CABG confers a survival advantage over MT for ULMCAD  
  • In selected patients PCI is equivalent to CABG for ULMCAD 
 ∴ PCI confers a survival advantage over MT for ULMCAD 
Evidence for the first premise came from subgroup analyses of 7 trials performed 30 years ago,19-

25 and evidence for the second came from 4 randomized trials26-29 and 8 cohort studies,30-37 all 
reported during the past 15 years. 
 
 In the absence of clinical trials directly comparing PCI with MT for this indication, a 
Bayesian network was constructed to perform the indirect comparison.16, 17 In the Bayesian 
models, the treatment advantage of PCI over MT was represented as ∆PCI-MT=∆PCI-CABG – ∆MT-

CABG and inferred from summary data. To compare PCI with MT for ULMCAD, we have 
individual studies that have compared CABG with MT and CABG with PCI. Suppose that the 
probability of dying after CABG, MT, and PCI is Pc, PM, and PP. The analysis of each of these 
trials can be assessed through ORs: 

𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶 =  
𝑃𝑃𝐶𝐶 (1 − 𝑃𝑃𝐶𝐶)⁄
𝑃𝑃𝐶𝐶 (1 − 𝑃𝑃𝐶𝐶)⁄  and 𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶 =  

𝑃𝑃𝐶𝐶 (1 − 𝑃𝑃𝐶𝐶)⁄
𝑃𝑃𝐶𝐶 (1 − 𝑃𝑃𝐶𝐶)⁄  

The summary OR of the indirect comparison of PCI vs. MT can be computed by the ratio of the 
ORs from the studies comparing CABG vs. MT and CABG vs. PCI: 
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𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶
𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶

=  𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶 

To allow for parametric hypothesis testing (H0: ORPM = 1), a natural log transformation of the 
above equation yields:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶) − 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒 (𝑂𝑂𝑂𝑂𝐶𝐶𝐶𝐶). 
 
From the model presented in Table B1 below, we obtain the posterior distribution of 

𝑒𝑒𝑒𝑒𝑝𝑝(𝑃𝑃𝑃𝑃) and 𝑒𝑒𝑒𝑒𝑝𝑝(𝑀𝑀𝑃𝑃), which are the summary odds ratios of PCI vs. CABG and MT vs. 
CABG, respectively. We also obtain 𝑒𝑒𝑒𝑒𝑝𝑝(𝑃𝑃𝑀𝑀), the indirect summary odds ratio of PCI vs. MT. 
As in prior reports,16, 17 we can use MCMC modeling8, 9 to draw a large simulated sample from 
the posterior distribution to identify accurate estimates for relative mortality rates after PCI, 
CABG and MT. As shown in the caterpillar plot below, the indirect comparison suggests a 
benefit of PCI over MT (OR, 3.21; 95% BCI, 2.12–5.00) and of CABG over MT (OR, 3.29; 95% 
BCI, 2.37–4.47) for 1-year mortality. There is no difference in mortality after PCI compared with 
CABG (OR, 1.03; 95% BCI, 0.76–1.35), as shown in the figure below:  

 
Caterpillar Plot Showing Mortality Rates after Treatment of Left Main Coronary Artery 
Disease. A Bayesian network meta-analysis of 19 trials produced posterior median odds 
ratios and 95% credible intervals (data labels) for 1-year mortality after percutaneous 
coronary intervention (PCI), coronary artery bypass graft (CABG) surgery, or medical 
therapy (MT). The distributions are plotted on the OR and θ  (logeOR) scales. The 
indirect comparisons suggest that mortality rates were no different after CABG or PCI 
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but more than 3-fold higher after MT than after PCI, and more than 3-fold higher after 
MT than after CABG. 
 

 
Because not all studies comparing PCI with CABG were randomized or matched, and 

many of the trials in the network analysis were published more than 30 years ago but arguably 
still relevant today,38 the writing committee assigned a level of evidence (LOE) B to the 
recommendation.7, 18 No classical statistical approach exists to directly quantify the probability of 
outcomes using indirect comparisons. 

  
Although the details of methods can be found in original reports,16, 17 practitioners 

interested in replicating the network meta-analysis can follow the methods outlined here by 
inputting the model, data and initial values directly into OpenBUGs or WinBUGS, using 
procedures in Appendix B Tables 2 and 3 below: 
 
Supplementary Appendix B—Table 2:  
How to Enter the Model, Data and Initial Values Directly into OpenBUGS or WinBUGS 

1. In OpenBUGS or WinBUGS, under the File menu on the taskbar, click New 3 times to 
open 3 new files. 

2. Copy and paste the model, data, and inits from Table D2 below into each of the 3 
windows. 

3. Under Model, click Specification, and a new window opens. 
4. Place the cursor anywhere in open model window, and then click the check model box. 

At the bottom of the model window, you should see the message, model is syntactically 
correct.  

5. Place the cursor anywhere in open data window, and then click the load data box. At the 
bottom of the model window, you should see the message, data loaded. 

6. Click compile. You should see the message model compiled. 
7. Place the cursor anywhere in open inits window, and then click the load inits box. At the 

bottom of the model window, you should see the message, initial values loaded... 
8. Click the box gen inits. 
9. Under Inferences, click Samples… 
10. A new window opens. Enter the term lor into the node space. Click set. 
11. Under Model, click Update… and change 1000 to 10000 in the updates tool. Click the 

update box.  
12. Under Inferences, click Samples… if it is not open and review history. Enter an * into the 

node and click on stats to get your results, which present the loge(OR) for the 
comparisons of CABG (1), PCI (2), and MT (3). 
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Supplementary Appendix B—Table 3: 
Direct-Entry Commands for WinBUGS or OpenBUGS 
 
#model 
model 
{ # i counts the two arms of all 19 studies 
for (i in 1:38) 
{ 
r[i] ~ dbin(p[i], n[i]); 
logit(p[i]) <- mu[s[i]]+delta[i]*(1-equals(t[i],b[i])); 
delta[i] ~ dnorm(md[i], prec); 
md[i] <- d[t[i]]-d[b[i]]; 
} 
# j represents the CABG arm 
for (j in 1:19) 
{ 
mu[j] ~ dnorm(0, .001); 
} 
prec ~ dgamma(0.001, 0.001); 
d[1] <- 0; 
# K represents the relative treatment comparator: k=2 is PCI, k=3 is MT 
for (k in 2:3) 
{ 
d[k] ~ dnorm(0, .001) 
} 
for (c in 1:2) 
{ 
for (k in (c+1):3) 
{ 
lor[c,k] <- d[k]-d[c]; 
log(or[c,k]) <- lor[c,k]; 
} 
} 
} 

 
#data (from table  
list(s=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19),t=c(1,2,1,2,1,
2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,1,3),r=c(15,15,4,1,5,2,20,26,7,9,12,3,18,20,25,2,19,21,20,5,
8,22,12,7,3,10,59,46,16,6,5,4,16,12,2,2,61,93),n=c(348,357,53,52,101,100,300,300,67,67,142,107,542,542,238,49,15
4,157,245,96,135,135,190,97,48,43,1183,309,141,24,40,17,89,32,28,31,899,440),b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)) 

 
#inits 
list(d=c(NA,0,0), prec=1, mu=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
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Supplementary Appendix B—Table 4:  
Data Source and Format for Indirect Inference “LMNetworkData.csv” 
 
 s[] t[] r[] nn[] b[] 
SYNTAX26 1 1 15 348  1 
 1 2 15 357 1 
LEMANS27 2 1 4 53 1 
 2 2 1 52 1 
Boudriot28 3 1 5 101 1 
 3 2 2 100 1 
PRECOMBAT29 4 1 20 300 1 
 4 2 26 300 1 
Cedars-Sinai30 5 1 7 67 1 
 5 2 9 67 1 
Chieffo34 6 1 12 142 1 
 6 2 3 107 1 
MAIN-COMPARE39 7 1 18 542 1 
 7 2 20 542 1 
Mäkikallio35 8 1 25 238 1 
 8 2 2 49 1 
Palmerini36 9 1 19 154 1 
 9 2  21 157 1 
Sanmartín37 10 1 20 245 1 
 10 2 5 96 1 
Wu32 11 1 8 135 1 
 11 2 22 135 1 
Brener33 12 1 12 190 1 
 12 2 7 97 1 
Takaro19, 40 13 1 3 48 1 
 13 3 10 43 1 
Chaitman20 14 1 59 1183 1 
 14 3 46 309 1 
Oberman21 15 1 16 141 1 
 15 3 6 24 1 
Cohen22 16 1 5 40 1 
 16 3 4 17 1 
Talano23 17 1 16 89 1 
 17 3 12 32 1 
European24 18 1 2 28 1 
 18 3 2 31 1 
Dzavik41 19 1 61 899 1 
 19 3 93 440 1 
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Supplementary Appendix C: Conjugate Normal Analysis of Revascularization Choices in 
Diabetic Patients with Multivessel Coronary Artery Disease42 
  
“Modern statisticians have … deprived themselves of any way of saying precisely what they 
mean when they decide between hypotheses.” 

 —Sir Harold Jeffreys, in A Theory of Probability43 
 
Table C1: Pop Quiz 
Q—What answer (A) describes the correct interpretation of a P value of <0.05 for a mortality 
advantage of bypass surgery over percutaneous coronary intervention from the FREEDOM44 
Trial?  
A1—At most, only 5% of diabetic patients with multivessel CAD would have a survival 
advantage with CABG as compared with PCI. 
A2—If we were to repeat the FREEDOM trial many times (eg, FREEDOM-1, FREEDOM-2, 
FREEDOM-3, and so on), using new data each time, and if the null hypothesis (H0) were really 
true, then on only 5% of those occasions would we (falsely) reject H0. 
A3—There is less than a 5% chance that the null hypothesis is true. 
Inspired by O’Hagan & Luce.45 Abbreviations: CABG, coronary artery bypass graft; CAD, 
coronary artery disease; FREEDOM, Future Revascularization Evaluation in Patients with 
Diabetes Mellitus: Optimal Management of Multivessel Disease 44; PCI, percutaneous coronary 
intervention.  

 
  

 
 Bayesian Inference: In the analysis of trial evidence, the Bayesian approach introduces 
the symbol θ to denote the hypothesis governing an underlying treatment effect, the prior 
probability 𝑝𝑝(θ) to denote our existing belief in θ based on external sources like older RCTs, and 
the variable y to signify new trial evidence or data, which for convenience is often analyzed on 
the natural log scale.1-3, 10, 45 In frequentist statistics the parameter θ is a fixed but unknown value 
best supported by the data, but in Bayesian analysis θ is a random variable. In both statistical 
approaches, the probability of occurrence of y depends on θ, but in Bayesian framework the 
dependence is formalized as the likelihood 𝑝𝑝(𝑦𝑦|θ) to describe the conditional probability of y,† 
usually in the form of loge(𝑂𝑂𝑂𝑂), for each possible value of θ in a mathematical relation that is 
commonly represented by a normal distribution (N): 

loge(𝑂𝑂𝑂𝑂) ~   N[θ,𝑉𝑉], ‡ 
where θ is the unknown parameter governing the underlying hypothesis governing the difference 
between 2 treatments, and 𝑉𝑉 is the variance.1  
 

The evidence relevant to the parameter θ, after m observations, can be summarized by: 

                                                 
† | denotes “given” or “conditional on,” as in “the data y, given the underlying hypothesis θ.” 
‡ ~ denotes “distributed from or sampled from,” as in the normal distribution N[θ,𝑉𝑉]; that is, 
gaussian distribution with mean θ and variance 𝑉𝑉. 

(Correct answer A2)  
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y = log𝑒𝑒(𝑂𝑂𝑂𝑂) ~   N �θ, 𝜎𝜎
2

𝑚𝑚
�, 

where θ is the parameter or treatment effect of interest, m is the effective number of events, and 
𝜎𝜎2 is the variance (standard deviation 𝜎𝜎) obtained using standard approaches.1  
 
 What we want to know, however, is how the probability of θ is altered by the new trial 
evidence y, which is denoted by 𝑝𝑝(𝜃𝜃|𝑦𝑦). This is the “posterior probability” of θ based on the new 
trial data y, which is calculated from Bayes theorem: 

𝑝𝑝(𝜃𝜃|𝑦𝑦) =  
𝑝𝑝(𝑦𝑦|𝜃𝜃)  ∙  𝑝𝑝(𝜃𝜃)

𝑝𝑝(𝑦𝑦) .           

In other words, Bayes’ theorem expresses how the new evidence y from FREEDOM changes the 
probability of θ. For a series of clinical trials h=1, 2, …, n, we have the general form of Bayes’ 
equation: 

𝑝𝑝(θ|𝑦𝑦) =  
𝑝𝑝(𝑦𝑦|θ)  ∙  𝑝𝑝(θ)

𝑝𝑝(𝑦𝑦) ,   

=  
𝑝𝑝(𝑦𝑦|θ) ∙ 𝑝𝑝(θ)

∑ 𝑝𝑝(𝑦𝑦ℎ|θ) ∙ 𝑝𝑝(θ)𝑛𝑛
ℎ=1

,  

=  
𝑝𝑝(𝑦𝑦|θ) ∙ 𝑝𝑝(θ)

∫ 𝑝𝑝(𝑦𝑦ℎ|θ) ∙ 𝑝𝑝(θ)𝑛𝑛
ℎ=1

 

 
 Basic definitions. As a convention, if observations in the hth trial are cross classified by 
treatment after CABG or PCI in a 2 x 2 table, and the odds of, say, death after CABG is a/c (the 
number of deaths divided by the number of survivors) and the odds of death after PCI b/d, then 
the OR describing the trial results is given by (a/c)/(b/d). Because some trials have small 
numbers of events, we add 0.5 to the numerator and denominator, and the trial result ORh on the 
loge scale becomes yh, to represent the treatment effect of the hth trial,1  

𝑦𝑦ℎ =  log �
(a +  12)(d + 1

2)

(b +  12)(c + 1
2)
�.   

 
The estimator has an approximate variance  

V(𝑦𝑦ℎ) =  
1

a + 1
2

+  
1

b +  12
+ 

1

c +  12
+  

1

d +  12
.      

 
 
 Conjugate Normal Model: If we let 𝑝𝑝(θ) denote the prior probability distribution of θ, 
which for the purposes of this analysis is not subjective opinion but rather is derived empirically 
from 8 existing trials,46-53 each of which has an outcome described by the summary statistic yold, 
and we now observe some new trial evidence from FREEDOM, yFREEDOM, then the probability of 
occurrence of yFREEDOM is conditional on θ and is denoted by p(yFREEDOM |θ). The conditional 
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probability of yFREEDOM for each possible value of θ is called the “likelihood.” What we are 
looking for, however, is the probability distribution of θ, which takes into account the trial 
evidence yFREEDOM and is denoted by p(θ|yFREEDOM). This is the posterior probability of θ, which is 
conditional on the trial data yFREEDOM, and is calculated from Bayes theorem above. In words, the 
posterior probability for the hypothesis θ given the evidence yFREEDOM is proportional to the 
likelihood times the prior probability for the hypothesis θ independent of the evidence.54 In 
summary, Bayes theorem expresses how the new evidence yFREEDOM changes the probability of θ, 
and incorporates it with what is already known based on yold. 

 
In older studies,46-53 we have data y1, …, y8, each of which is assumed to have a normal 

distribution, governed by an underlying treatment parameter θh and its variance 𝜎𝜎ℎ2 for h = 1,2, 
…, 8 trials. In order to put the variance into a workable form for the prior distribution, some 
experts recommend calculating the standard error σ/√m for each study using a term m to reflect 
the “effective number of events” in balanced trials,1 which is obtained from setting the variance 
of the loge(OR) to σ2/m and a normal likelihood with V(𝜇𝜇) =  𝑠𝑠2. Accordingly, the evidence 
relevant to the parameter θ, after m observations, can be summarized by: 

𝑦𝑦 ~   N �θ, 𝜎𝜎
2

𝑚𝑚
�, 

where 𝑦𝑦 = log𝑒𝑒(𝑂𝑂𝑂𝑂), θ is the parameter of interest or treatment effect, m is the effective number 
of events, and 𝜎𝜎2 is the variance (standard deviation 𝜎𝜎) obtained using standard approaches.1 In a 
2 x 2 table for a balanced randomized trial, it can be assumed that the sample sizes for each 
treatment are approximately equal, the number of events a ≈ b are very small compared with the 
number of enrolled patients c ≈ d in each treatment group, so that: 

V(𝜇𝜇𝑚𝑚) ≈
2
𝑎𝑎
≈  

4
𝑚𝑚

 ,     

where m = a + b is the number of events, allowing σ = 2 to be an appropriate choice.1 
 
 After calculating mh for each trial, we can obtain the “pooled” results by summing the ms 
for the h = 1, 2, …, 8 trials. The summed ms can be relabeled 𝑚𝑚0 to represent the overall 
“effective number of events” in the prior distribution. We can use this value to calculate a pooled 
loge(ORold) for the prior distribution by weighting the individual loge(ORh)s by their respective 
ms divided by the sum m0.55 
  
 Likelihood. In the context of clinical trials, it is reasonable to assume that the data from a 
new trial like FREEDOM can likewise be summarized by a statistic, 𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶), and 
will assume a normal distribution containing θ as the underlying treatment effect that governs the 
trial observation with its variance 𝜎𝜎𝑖𝑖2. The study-specific trial result yi can estimate the true 
underlying treatment effect with standard error 𝜎𝜎/√𝑛𝑛 .1 Similar to the prior discussion, we need 
to set 𝑦𝑦𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶), and 𝜎𝜎2 𝑛𝑛 = 𝑉𝑉(𝑦𝑦𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶).⁄ 1 The summed ns can be 
relabeled 𝑛𝑛0 to represent the overall “effective number of events” in the likelihood. 
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 Given that the normal prior 𝜃𝜃 ~ N[𝜇𝜇𝑚𝑚,𝜎𝜎𝑚𝑚2 /𝑚𝑚0] and the normal likelihood 
𝑦𝑦 ~ 𝑁𝑁[𝜇𝜇𝑛𝑛,𝜎𝜎𝑛𝑛2 𝑛𝑛0⁄ ] belong to the same family of mathematical functions,§ we have thus defined a 
“conjugate normal model.”1 The data table below can be entered into [R] using the code that 
follows to complete a conjugate-normal analysis. 
 
Supplementary Appendix C: Data table “DMDeathCABGvPCI.csv”: 
study n.cabg[]  n.pci[]  r.cabg[] r.pci[]  
BARI46  180 173 16 47 
ARTS47 96 112 8 15 
ERACI II48 39 39 4 4 
MASS II49 59 56 9 9 
SoS50 74 68 1 7 
CARDia51 248 254 32 37 
SYNTAX52 202 226 26 44 
VA CARDS53 97 101 5 21 
FREEDOM44 761 699 83 114 

where: n.cabg = number of patients undergoing CABG, n.pci = number of patients undergoing 
PCI, r.cabg = number of deaths in the CABG group, and r.pci = number of deaths in the PCI group. 
 
[R] code for Figure 1: Conjugate Normal Analysis.  
#Export data from Excel in comma-separated format containing a csv suffix, which is the best way to 
input data into [R}. Remember that "Z:" is a common designation of the hard disk on a Mac running 
Windows, but "C:" is used on a PC. Remember also to replace "johnbittl" with your user name on your 
computer, "Dropbox" and "BayesReview" with your folder names, and "DMDeathCABGvPCI.csv" with your file 
name: 
dmdat<-read.csv("Z:/Users/johnbittl/Dropbox/BayesReview/DMDeathCABGvPCI.csv",as.is=TRUE, header=T) 
str(dmdat); 
study<-c(dmdat$study); 
r.cabg<-c(dmdat$r.cabg); 
n.cabg<-c(dmdat$n.cabg); 
r.pci<-c(dmdat$r.pci); 
n.pci<-c(dmdat$n.pci); 
#Calculate ORs, log(OR)s, variance, and effective number of events, m: 
for (k in 1:9) 
{ 
or <- ((r.cabg+0.5)/(n.cabg-r.cabg+0.5))/((r.pci+0.5)/(n.pci-r.pci+0.5)) 
logor <- log(or); 
varlogor <- (1/(r.cabg+0.5))+(1/(n.cabg-r.cabg+0.5))+(1/(r.pci+0.5))+(1/(n.pci-r.pci+0.5)); 
m.theta<-4/varlogor; 
} 
#Convert to data frame with all variables listed as col heads 
mdmdat<-data.frame(study,m.theta,logor); 
mdmdat; 
#Split dataframe "mdmdat" into subsets, FREEDOM ("new" = likelihood) vs. non-FREEDOM ("old" = prior), 
separated by size of report 
old<-subset(mdmdat,n.cabg<=500); 
new<-subset(mdmdat,n.cabg>=500); 
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#calculate total number of events m.0 for prior distribution 
m.0<-sum(c(old$m.theta)); 
#sum log odds weighted by m/m.0 
for (k in 1:8) 
{ 
# calculate weighted log odds ratios; 
PriorLogOdds <- ((old$m.theta)/m.0)*(old$logor); 
} 
#sum log odds 
PriorPooledLogOR<-sum(c(PriorLogOdds)); 
PriorPooledLogSD <- 2/(sqrt(m.0));  
PriorPooledLogCI <- 1.96*4/(sqrt(m.0)); 
#calculate 95% CIs for the prior distribution 
PriorLower <- PriorPooledLogOR-(PriorPooledLogCI/2); 
PriorUpper <- PriorPooledLogOR+(PriorPooledLogCI/2); 
#exponentiate to get Prior ORs and 95% CIs 
PriorPooledOR <- exp(PriorPooledLogOR); 
LowerCI <- exp(PriorLower); 
UpperCI <- exp(PriorUpper);   
#To get the SD of the backtransformed data in a normal distribution  
#----------------------------------------------------------------------------- 
#calculate effective number of events n.0 for likelihood from FREEDOM 
n.0 <- sum(c(new$m.theta)); 
likeLogSD<-2/(sqrt(n.0));  
for (k in 1:1) 
{ 
# calculate "weighted" log odds ratios; 
LikeLogOdds <- ((new$m.theta)/n.0)*(new$logor); 
} 
likeLogOR<-  sum(c(LikeLogOdds));  
likeLogCI <- 1.96*4/(sqrt(n.0)); 
likeSD<- exp(likeLogSD); 
likeOR<-exp(likeLogOR); 
#calculate the 95%CIs for the likelihood 
likeLogLower <- likeLogOR-(likeLogCI/2); 
likeLogUpper <- likeLogOR+(likeLogCI/2); 
#exponentiate 
likeLowerCI <- exp(likeLogLower); 
likeUpperCI <- exp(likeLogUpper); 
#----------------------------------------------------------------------------- 
#calculate posterior 
PostLogOR<-(((m.0*PriorPooledLogOR)+(n.0*(likeLogOR)))/((m.0+n.0))); 
PostLogSD<-2/(sqrt(m.0+n.0)); 
PostCI <- 1.96*4/(sqrt(m.0+n.0)); 
PostLower<-PostLogOR-(PostCI/2); 
PostUpper<-PostLogOR+(PostCI/2); 
#exponentiate 
PostOR<-exp(PostLogOR); 
PostLowerCI<-exp(PostLower); 
round(PostLowerCI,2); 
PostUpperCI<-exp(PostUpper); 
#To get the SD of the backtransformed data in a normal distribution 
#---------------------------------------------------------------------- 
#print all 
PriorLogVariable <- 
c("PriorPooledLogOR","PriorPooledLogCI","PriorLower","PriorUpper","PriorPooledLogSD"); 
PriorLogResult <- c(PriorPooledLogOR,PriorPooledLogCI,PriorLower,PriorUpper,PriorPooledLogSD); 
PriorLog <- data.frame(PriorLogVariable, PriorLogResult); 
PriorVariable <- c("PriorPooledOR","LowerCI","UpperCI"); 
PriorResult <- c(PriorPooledOR,LowerCI,UpperCI); 
Prior <- data.frame(PriorVariable, PriorResult); 
print (PriorLog); 
print (Prior); 
likeVariable <- c("likeLogSD","likeLogOR","likeSD","likeOR","likeLowerCI","likeUpperCI"); 
likeResult <- c(likeLogSD,likeLogOR,likeSD,likeOR,likeLowerCI,likeUpperCI); 
likeData <- data.frame(likeVariable,likeResult); 



   16 

like <- data.frame (likeData); 
print (like); 
PostLogVariable <- c("PostLogOR", "PostLower", "PostUpper", "PostLogSD"); 
PostLogResult <- c(PostLogOR, PostLower, PostUpper, PostLogSD); 
PostLog <- data.frame(PostLogVariable, PostLogResult); 
PostVariable <- c("PostOR", "PostLowerCI", "PostUpperCI"); 
round(PostLowerCI,2); 
PostResult <- c(PostOR, PostLowerCI, PostUpperCI); 
Post <- data.frame(PostVariable, PostResult); 
print (PostLog); 
print (Post); 
#------------------------------------------------------------------------ 
#triplot 
x<-seq(from=-1,to=0.3,by=0.01); 
#Prior 
y1=dnorm(x,mean<-PriorPooledLogOR,sd<-PriorPooledLogSD); 
#Likelihood 
y2=dnorm(x,mean<-likeLogOR,sd<-likeLogSD); 
#Posterior 
y3=dnorm(x,mean<-PostLogOR, sd<-PostLogSD); 
maxY = max( c(y1,y2,y3) ); 
plot(x,y1,type="l", ylim = c(0,maxY), cex.axis=1.0, xlab=bquote(theta), cex.lab=1.6, ylab="Probability 
Density", axes=TRUE, lwd=3,col="blue"); 
axis (4, pos=0.0, tck = 0, labels=FALSE, col="black"); 
text (-0.8,3,"Prior (8 trials)",col="blue", cex= 1.4, font=3); 
text (-0.8,2.7,"(Refs. 23-30)",col="blue", cex= 1.4, font=3); 
text (-0.12,2.5,"Likelihood (FREEDOM) (19)",col="red",cex = 1.4, font =3); 
text (-0.35, 3.5, "Posterior", cex = 1.4, font=3); 
text (-0.90, 3.8,"A. All-cause",cex = 1.6); 
text (-0.90, 3.5,"mortality",cex = 1.6); 
text(-0.9,1.5,"CABG better",cex=1.2, font=3); 
text(0.2,1.5,"PCI better",cex=1.2, font=3); 
text (PostLogOR, 0.55, round(PostOR,2))    ; 
text (PostLower-0.05, 0.55, round(PostLowerCI,2)) ; 
text (PostUpper+0.05, 0.55, round(PostUpperCI,2)) ; 
text (PriorPooledLogOR, max(y1)/7, col="blue",round(PriorPooledOR,2)); 
text (PriorLower-0.04, max(y1)/7, col="blue",round(LowerCI,2)); 
text (PriorUpper+0.04, max(y1)/7, col="blue",round(UpperCI,2)) ; 
text (likeLogOR, max(y2)/7.5, col="red", round(likeOR,2)) ; 
text (likeLogLower-0.04, max(y2)/7.5, col="red", round(likeLowerCI,2)) ; 
text (likeLogUpper+0.04, max(y2)/7.5, col="red", round(likeUpperCI,2))  ; 
segments(PostLower, max(y3)/7, PostLogOR-0.04, max(y3)/7, lty=1, col="black", lwd=2) ; 
segments(PostUpper, max(y3)/7, PostLogOR+0.04, max(y3)/7, lty=1, col="black", lwd=2) ; 
segments(PriorLower, max(y1)/7, PriorPooledLogOR-0.04, max(y1)/7, lty=1, col="blue", lwd=2) ; 
segments(PriorUpper, max(y1)/7, PriorPooledLogOR+0.04, max(y1)/7, lty=1, col="blue", lwd=2) ; 
segments(likeLogLower, max(y2)/7.5, likeLogOR-0.04, max(y2)/7.5, lty=1, col="red", lwd=2) ; 
segments(likeLogUpper+0.005, max(y2)/7.5, likeLogOR+0.04, max(y2)/7.5, lty=1, col="red", lwd=2)  ; 
mtext ("Odds Ratio",3, line =2, cex = 1.6); 
axis (3, at=c(-0.91,-0.69, -0.51, -0.35, -0.22, -0.105, 0.0, 0.095, 0.262), labels=c(0.4,0.5, 0.6, 0.7, 
0.8, 0.9, "1.0", 1.1, 1.3)); 
lines(x,y2,type="l",lwd=3,col="red"); 
lines(x,y3,type="l", lwd=3,col="black"); 
#To create good margins 
mar.default <- c(5,4,4,2) + 0.1; 
par(mar = mar.default + c(0, 4, 0, 0)); 
#To copy in eps and pdf formats to your original folder. (Change the date each time or you will 
overwrite.) 
dev.copy2eps(file="DMDeathJun10.eps"); 
dev.copy2pdf(file="DMDeathjun10.pdf"); 

 

 
Bayes factors. The use of Bayes factors (BFs) is a potentially superior approach to 

quantifying evidence than is the potentially conflicting mix of approaches based on P values and 



   17 

hypothesis testing.1, 56 The BF is defined as a likelihood ratio (LR) or relative likelihood of two 
different hypotheses and can range from 0 to ∞, with small values close to 0 simultaneously 
providing strong evidence against the null hypothesis and for the alternative hypothesis.1, 43, 56  

 
Bayes factors can be derived from the relation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 𝑙𝑙𝑜𝑜 𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 𝐻𝐻𝑦𝑦𝑝𝑝𝑙𝑙𝐻𝐻ℎ𝑒𝑒𝑠𝑠𝑃𝑃𝑠𝑠 ×  𝐵𝐵𝑎𝑎𝑦𝑦𝑒𝑒𝑠𝑠 𝑜𝑜𝑎𝑎𝑓𝑓𝐻𝐻𝑙𝑙𝑃𝑃 = 𝑃𝑃𝑙𝑙𝑠𝑠𝐻𝐻𝑒𝑒𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 𝑙𝑙𝑜𝑜 𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 𝐻𝐻𝑦𝑦𝑝𝑝𝑙𝑙𝐻𝐻ℎ𝑒𝑒𝑠𝑠𝑃𝑃𝑠𝑠, 
where the Bayes factor = 

𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃(𝐷𝐷𝑎𝑎𝐻𝐻𝑎𝑎,𝑙𝑙𝑃𝑃𝑔𝑔𝑒𝑒𝑛𝑛 𝐻𝐻ℎ𝑒𝑒 𝑛𝑛𝑁𝑁𝑙𝑙𝑙𝑙 ℎ𝑦𝑦𝑝𝑝𝑙𝑙𝐻𝐻ℎ𝑒𝑒𝑠𝑠𝑃𝑃𝑠𝑠)
𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃(𝐷𝐷𝑎𝑎𝐻𝐻𝑎𝑎,𝑙𝑙𝑃𝑃𝑔𝑔𝑒𝑒𝑛𝑛 𝐻𝐻ℎ𝑒𝑒 𝑎𝑎𝑙𝑙𝐻𝐻𝑒𝑒𝑃𝑃𝑛𝑛𝑎𝑎𝐻𝐻𝑃𝑃𝑔𝑔𝑒𝑒 ℎ𝑦𝑦𝑝𝑝𝑙𝑙𝐻𝐻ℎ𝑒𝑒𝑠𝑠𝑃𝑃𝑠𝑠) 

 

 
Using data from Figure 1 in the main report, we obtain: 

 
Comparison Bayes 

Factor 
Prior 

Probability 
(%) 

Prior 
Probability 

Prior Odds Posterior Odds Posterior 
Probability 

Posterior 
Probability (%) 

FREEDOM 1.19E-02 2.70E-04 2.70E-06 2.70E-06 3.22E-08 3.22E-08 3.22E-06 

Calculations as follows56: Odds = Prob/(1-Prob). Posterior odds = Bayes factor × prior odds.  
Minimum Bayes factors (BF) can also be calculated from56:  

𝑀𝑀𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚𝑁𝑁𝑚𝑚 𝐵𝐵𝑎𝑎𝑦𝑦𝑒𝑒𝑠𝑠 𝐹𝐹𝑎𝑎𝑓𝑓𝐻𝐻𝑙𝑙𝑃𝑃 =  𝑒𝑒−𝑍𝑍2/2, 
using 2-tailed outputs for Z from [R] functions “pnorm” and “qnorm,” which in this case 
produced a value of 1.09E-02, in good agreement with the previous calculation. 
 
 Hierachical meta-analysis using a noninformative prior. We created a hierarchical 
Bayesian model to compare PCI with CABG in diabetic patients with multivessel CAD: 

 𝐿𝐿𝑙𝑙𝑙𝑙𝑒𝑒(𝑂𝑂𝑂𝑂𝑖𝑖)|𝜃𝜃𝑖𝑖, 𝑠𝑠𝑖𝑖2  𝑃𝑃𝑛𝑛𝑂𝑂𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑂𝑂𝑒𝑒𝑛𝑛𝐻𝐻
~  𝑁𝑁(𝜃𝜃𝑖𝑖 , 𝑠𝑠𝑖𝑖2), 

 𝜃𝜃𝑖𝑖|𝜃𝜃, 𝜏𝜏2 𝑃𝑃𝑛𝑛𝑂𝑂𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑂𝑂𝑒𝑒𝑛𝑛𝐻𝐻 
~  𝑁𝑁(𝜃𝜃, 𝜏𝜏2), 

 (𝜃𝜃, 𝜏𝜏2) ~ 𝑝𝑝(𝜃𝜃, 𝜏𝜏2), (1) 
 
where ORi denotes the odds ratio for mortality after CABG compared with PCI in the i-th (i =1,... 
9) study, θi  the unknown study-level treatment effect (a quantity that is not directly observable 
but is a parameter that governs the hypothetical processes leading to the observed treatment 
effect11) 𝑠𝑠𝑖𝑖2 the (asymptotic) variance of loge(ORi), θ the population-average treatment effect, and 
τ2 the between-study variance of study-level effects.**  
                                                 
** In Bayesian meta-analysis, we have a separate parameter for mean treatment effect in each 
trial, θi, but we can formulate a structural prior to state that these treatment effects should not be 
too different from each other in a hierarchical model, where a common underlying mean efficacy 
is postulated and each trial effect is independently distributed around this mean. 
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 Compared with the fixed-effects approach to meta-analysis (i.e., assuming 𝜃𝜃1 =  𝜃𝜃2 =
 ⋯ =  𝜃𝜃), the random-effects meta-analysis model acknowledges the existence of between-study 
variation and incorporates it explicitly into the estimation process.57 Moreover, the prior belief 
about the summary effect size θ and between-study heterogeneity

 
is incorporated into the prior 

distribution 𝑝𝑝(𝜃𝜃, 𝜏𝜏2).58 
 
 [R] Code for Figure 2: Hierarchical Meta-Analysis 
 
#Export data from Excel in comma-separated format containing a csv suffix, which is the best way to 
input data into [R}. Remember that "Z:" is a common designation of the hard disk on a Mac running 
Windows, but "C:" is used on a PC. Remember also to replace "johnbittl" with your user name on your 
computer, "Dropbox" and "BayesReview" with your folder names, and "DMCABGvPCI.csv" with your file name: 
Ddat<-read.csv("Z:/Users/johnbittl/Dropbox/BayesReview/DMDeathCABGvPCI.csv",as.is=TRUE, header=T); 
str(Ddat); 
study_name<-c(Ddat$study_name); 
r.cabg<-c(Ddat$r.cabg); 
n.cabg<-c(Ddat$n.cabg); 
r.pci<-c(Ddat$r.pci); 
n.pci<-c(Ddat$n.pci); 
#Specify the model in BUGS language, but save it as a string in [R] 
modelString=" 
model 
{ 
# K1 is the number of trials; 
for (k in 1:9) 
{ 
# calculate odds ratios; 
or[k] <- ((r.cabg[k]+0.5)/(n.cabg[k]-r.cabg[k]+0.5))/((r.pci[k]+0.5)/(n.pci[k]-r.pci[k]+0.5)); 
logor[k] <- log(or[k]); 
varlogor[k] <- (1/(r.cabg[k]+0.5))+(1/(n.cabg[k]-r.cabg[k]+0.5))+(1/(r.pci[k]+0.5))+(1/(n.pci[k]-
r.pci[k]+0.5)); 
invlogor[k] <- 1/varlogor[k];  #variance; 
logor[k] ~ dnorm(theta[k], invlogor[k]); 
or.est[k] <- exp(theta[k]); 
theta[k] ~ dnorm(mu.theta, prec.theta); # random effects distribution; 
} 
mu.theta ~ dnorm(0, 0.001); # uninformative prior distribution 
prec.theta ~ dgamma(0.001, 0.001);  # uninformative prior distribution; 
or.theta <- exp(mu.theta); 
# probability of mean effect greater than zero; 
pmu0 <- equals(min(mu.theta,0),0); 
theta.new ~ dnorm(mu.theta, prec.theta);  # predicted theta for a new study; 
or.new <- exp(theta.new);  # calculate the new OR; 
# BUGS model specification ends 
} 
  " 
# Write the modelString to a file 
writeLines (modelString,con="model.txt"); 
# Use BRugs to check model 
modelCheck ("model.txt"); 
#load data 
dataList = list(n.cabg=c(n.cabg), 
     n.pci=c(n.pci), 
     r.cabg=c(r.cabg), 
     r.pci=c(r.pci) 
); 
 
#Use BRugs commands to put the data into a file and ship the file to BUGS 
modelData(bugsData(dataList)); 
#Initialize the chains 
nChain=1; 
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modelCompile(numChains = nChain); #Compile the model 
initsList = list(mu.theta=0, prec.theta=1); 
modelInits(bugsData(initsList)); 
modelGenInits() 
#R defines a new variable to specify an arbitrary chain length 
chainLength1 = 5000; 
#BRugs tells BUGS to generate a MCMC chain 
modelUpdate (chainLength1); 
#BRugs keeps a record of parameters 
samplesSet(c("mu.theta","or.new","prec.theta","or.theta","theta.new")); 
#BRugs asks BUGS for summary statistics 
chainLength2 = 10000; 
thinStep = 2; 
modelUpdate (chainLength2); 
thetaSummary = samplesStats (c("mu.theta","or.new","prec.theta","or.theta","theta.new")); thetaSummary; 
print(thetaSummary); 
 

 
[R] Code for Figure 2: Standard Meta-Analysis 
Traditional forest plots can be created with the open-source statistical program [R] 3.0.359 and 
library package “meta” 3.8-060 using the following [R] code: 
#Export data from Excel in comma-separated format containing a csv suffix, which is the best way to 
input data into [R}. Remember that "Z:" is a common designation of the hard disk on a Mac running 
Windows, but "C:" is used on a PC. Remember also to replace "johnbittl" with your user name on your 
computer, "Dropbox" and "BayesReview" with your folder names, and "DMDeath.csv" with your file name: 
deathdat<-read.csv("Z:/Users/johnbittl/Dropbox/BayesReview/DMDeathCABGvPCI.csv",as.is=TRUE, header=T); 
str(deathdat); 
study<-c(deathdat$study); 
r.cabg<-c(deathdat$r.cabg); 
n.cabg<-c(deathdat$n.cabg); 
r.pci<-c(deathdat$r.pci); 
n.pci<-c(deathdat$n.pci); 
mdeathdat<-data.frame(study,n.cabg,n.pci,r.cabg,r.pci); 
mdeathdat; 
mdeath1 = metabin(r.cabg, n.cabg, r.pci, n.pci, sm = "OR", data = mdeathdat, studlab = study); 
str(mdeath1); 
class(mdeath1); 
mdeath1; 
summary(mdeath1); 
X11(width=10,height=7); 
forest(mdeath1,col.square="blue",col.diamond="blue",rightcols=c("effect", 
"ci"),lab.e="CABG",lab.c="PCI",xlim=c(0.1,10),xlab="CABG better      PCI better"); 
dev.copy2eps(file="metaDMDeathJun10.eps"); 
dev.copy2pdf(file="metaDMDeathJun10.pdf"); 
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Supplemental Appendix D: Network Meta-Analysis of Outcomes after Various Durations 
of Dual Antiplatelet Therapy (DAPT) after Drug-Eluting Stent (DES) Implantation 
 
 We developed Bayesian meta-analysis models to perform indirect comparisons after short 
(S), medium (M) or long (L) durations of DAPT because direct comparisons do not exist, using a 
technique also called mixed treatment comparisons or network meta-analysis.61 For each of the 
RCTs, we assume that the number of deaths after each duration of DAPT has a binomial 
distribution, and the logit of the mortality rate has a non-informative prior distribution. For the 7 
studies that have both 3-6 month and 12 month arms,62-68 we model the number of death events 
after short DAPT as a binomial distribution, and assume that the difference of log odds between 
a short (S) duration of DAPT and a 12 month duration (M) of DAPT from each study δi,SM 

follows a normal random effects distribution with mean dSM and variance 𝜏𝜏𝑆𝑆𝐶𝐶2 , where dSM 
characterizes the comparative effectiveness between a short duration of DAPT and 12 months of 
therapy. Similarly, for the 4 studies that have arms treated with 12 months (M) of DAPT and 
long (L) durations of DAPT, we model the number of deaths after prolonged DAPT as a 
binomial distribution, and assume that the difference of log odds from each study δiLM follows a 
normal random effects distribution with mean dLM and variance 𝜏𝜏𝐿𝐿𝐶𝐶2 , where dLM characterizes the 
comparative effectiveness between prolonged DAPT and 12 months of therapy.  
 
 The difference between dSM and dLM, which can be denoted by dSL = dSM – dLM, 
parameterizes the comparative effectiveness between short and long durations of DAPT under 
the model. Finally, we complete the model specification by imposing prior distributions to the 
parameters. The complete model is as follows:  

  12 𝑚𝑚𝑙𝑙𝑠𝑠 𝑎𝑎𝑃𝑃𝑚𝑚 𝑜𝑜𝑙𝑙𝑃𝑃 𝑠𝑠𝐻𝐻𝑁𝑁𝑂𝑂𝑃𝑃𝑒𝑒𝑠𝑠: 𝑃𝑃𝑖𝑖𝐶𝐶 𝑃𝑃𝑛𝑛𝑂𝑂𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑂𝑂𝑒𝑒𝑛𝑛𝐻𝐻
~  𝐵𝐵𝑃𝑃𝑛𝑛𝑙𝑙𝑚𝑚𝑃𝑃𝑎𝑎𝑙𝑙(𝑝𝑝𝑖𝑖𝐶𝐶,𝑁𝑁𝑖𝑖𝐶𝐶), 

 𝐿𝐿𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖𝐶𝐶/(1 − 𝑝𝑝𝑖𝑖𝐶𝐶)) = 𝜇𝜇𝑖𝑖𝐶𝐶, 

 𝜇𝜇𝑖𝑖𝐶𝐶 𝑃𝑃𝑛𝑛𝑂𝑂𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑂𝑂𝑒𝑒𝑛𝑛𝐻𝐻
~  𝑁𝑁(0, 103), 𝑃𝑃 = 1, … ,11, 

 𝑆𝑆ℎ𝑙𝑙𝑃𝑃𝐻𝐻 𝑎𝑎𝑃𝑃𝑚𝑚 𝑜𝑜𝑙𝑙𝑃𝑃 𝑃𝑃𝑒𝑒𝑙𝑙𝑒𝑒𝑔𝑔𝑎𝑎𝑛𝑛𝐻𝐻 𝑠𝑠𝐻𝐻𝑁𝑁𝑂𝑂𝑃𝑃𝑒𝑒𝑠𝑠: 𝑃𝑃𝑖𝑖𝑆𝑆
 𝑃𝑃𝑛𝑛𝑂𝑂𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑂𝑂𝑒𝑒𝑛𝑛𝐻𝐻

~        𝐵𝐵𝑃𝑃𝑛𝑛𝑙𝑙𝑚𝑚𝑃𝑃𝑎𝑎𝑙𝑙(𝑝𝑝𝑖𝑖𝑆𝑆,𝑁𝑁𝑖𝑖𝑆𝑆), 

𝑆𝑆ℎ𝑙𝑙𝑃𝑃𝐻𝐻 𝑔𝑔𝑠𝑠. 12 𝑚𝑚𝑙𝑙𝑠𝑠: 𝐿𝐿𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖𝑆𝑆/(1 − 𝑝𝑝𝑖𝑖𝑖𝑖)) =  𝜇𝜇𝑖𝑖𝑆𝑆= 𝜇𝜇𝑖𝑖𝑆𝑆 + 𝛿𝛿𝑖𝑖,𝑆𝑆𝐶𝐶,  

 𝛿𝛿𝑖𝑖,𝑆𝑆𝐶𝐶 𝑃𝑃𝑛𝑛𝑂𝑂𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑂𝑂𝑒𝑒𝑛𝑛𝐻𝐻
~  𝑁𝑁(𝑂𝑂𝑆𝑆𝐶𝐶, 𝜏𝜏𝑆𝑆𝐶𝐶2 ), 𝑃𝑃 = 1, … , 7, 

 𝐿𝐿𝑙𝑙𝑛𝑛𝑙𝑙 𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷 𝑎𝑎𝑃𝑃𝑚𝑚 𝑜𝑜𝑙𝑙𝑃𝑃 𝑃𝑃𝑒𝑒𝑙𝑙𝑒𝑒𝑔𝑔𝑎𝑎𝑛𝑛𝐻𝐻 𝑠𝑠𝐻𝐻𝑁𝑁𝑂𝑂𝑃𝑃𝑒𝑒𝑠𝑠: 𝑃𝑃𝑖𝑖𝐿𝐿
 𝑃𝑃𝑛𝑛𝑂𝑂𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑂𝑂𝑒𝑒𝑛𝑛𝐻𝐻

~        𝐵𝐵𝑃𝑃𝑛𝑛𝑙𝑙𝑚𝑚𝑃𝑃𝑎𝑎𝑙𝑙(𝑝𝑝𝑖𝑖𝐿𝐿,𝑁𝑁𝑖𝑖𝐶𝐶𝐿𝐿), 

𝐿𝐿𝑙𝑙𝑛𝑛𝑙𝑙 𝑔𝑔𝑠𝑠. 12 𝑚𝑚𝑙𝑙𝑠𝑠: 𝐿𝐿𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖𝐿𝐿/(1 − 𝑝𝑝𝑖𝑖𝐿𝐿)) = 𝜇𝜇𝑖𝑖𝐿𝐿  = 𝜇𝜇𝑖𝑖𝐶𝐶 +  𝛿𝛿𝑖𝑖,𝐿𝐿𝐶𝐶, 

 𝛿𝛿𝑖𝑖,𝐿𝐿𝐶𝐶 𝑃𝑃𝑛𝑛𝑂𝑂𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑂𝑂𝑒𝑒𝑛𝑛𝐻𝐻
~  𝑁𝑁(𝛿𝛿𝐿𝐿𝐶𝐶, 𝜏𝜏𝐿𝐿𝐶𝐶2 ), 𝑃𝑃 = 8, … ,11, 

  𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃𝑠𝑠: 𝑂𝑂𝑆𝑆𝐶𝐶 ~ 𝑁𝑁(0, 103), 
 𝑂𝑂𝐿𝐿𝐶𝐶 ~ 𝑁𝑁(0, 103), 
 𝜏𝜏𝑆𝑆𝐶𝐶2  ~ 𝐼𝐼𝐼𝐼(10−3, 10−3), 
 𝜏𝜏𝐿𝐿𝐶𝐶2  ~ 𝐼𝐼𝐼𝐼(10−3, 10−3),  
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where 𝑃𝑃𝑖𝑖𝐶𝐶, 𝑝𝑝𝑖𝑖𝐶𝐶, and 𝑁𝑁𝑖𝑖𝐶𝐶 are the number of deaths, associated mortality, and number of subjects 
from the 12-month arm of 11 studies, respectively, 𝑃𝑃𝑖𝑖𝑆𝑆, 𝑝𝑝𝑖𝑖𝑆𝑆, and 𝑁𝑁𝑖𝑖𝑆𝑆 are the number of deaths, 
associated mortality, and number of subjects from short DAPT arm of 9 studies, and 𝑃𝑃𝑖𝑖𝐿𝐿, 𝑝𝑝𝑖𝑖𝐿𝐿, and 
𝑁𝑁𝑖𝑖𝐿𝐿 are the number of deaths, associated mortality, and number of subjects from the prolonged 
DAPT arm of 5 studies.  
 
 
 
 
Data Table for Mortality in the DAPT Network Meta-Analysis: “NetworkDAPTDeath”  

 s[] t[] r[] nn[] b[] 
DES-LATE (36 vs. 12 mo) 1 2 32 2514 1 
DES-LATE (36 vs. 12 mo) 1 3 46 2531 1 
PRODIGY (24 vs. 6 mo) 2 1 45 751 1 
PRODIGY (24 vs. 6 mo) 2 3 49 750 1 
EXCELLENT (12 vs. 6 mo) 3 1 4 722 1 
EXCELLENT (12 vs. 6 mo) 3 2 7 721 1 
RESET (12 vs. 3 mo) 4 1 5 1059 1 
RESET (12 vs. 3 mo) 4 2 8 1058 1 
OPTIMIZE (12 vs. 3 mo) 5 1 43 1563 1 
OPTIMIZE (12 vs. 3 mo) 5 2 45 1556 1 
ARCTIC (18 vs. 12 mo) 6 2 9 624 1 
ARCTIC (18 vs. 12 mo) 6 3 7 635 1 
SECURITY (12 vs. 6 mo) 7 1 8 682 1 
SECURITY (12 vs. 6 mo) 7 2 8 717 1 
DAPT (30 vs. 12 mo) 8 2 74 4941 1 
DAPT (30 vs. 12 mo) 8 3 98 5020 1 
ITALIC (24 vs. 6 mo) 9 1 8 912 1 
ITALIC (24 vs. 6 mo) 9 3 7 910 1 
ISAR-SAFE (12 vs. 6 mo) 10 1 8 1997 1 
ISAR-SAFE (12 vs. 6 mo) 10 2 12 2003 1 
OPTIDUAL (48 vs. 12 mo) 11 2 24 690 1 
OPTIDUAL (48 vs. 12 mo) 11 3 16 695 1 
I-LOVE-IT 2 (12 vs. 6 mo) 12 1 11 909 1 
I-LOVE-IT 2 (12 vs. 6 mo) 12 2 14 920 1 
IVUS-XPL (12 vs. 6 mo) 13 1 5 699 1 

IVUS-XPL (12 vs. 6 mo) 13 2 10 701 1 

NIPPON (18 vs. 6 mo) 14 1 16 1654 1 

NIPPON (18 vs. 6 mo) 14 3 7 1653 1 
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Abbreviations: ARCTIC69 is Assessment by a double Randomisation of a Conventional 
antiplatelet strategy versus a monitoring-guided strategy for drug-eluting stent implantation and 
of Treatment Interruption versus Continuation 1 year after stenting; CI, confidence interval; 
DAPT,70 Dual Antiplatelet Therapy; DES-LATE,71 Optimal Duration of Clopidogrel Therapy 
With Drug Eluting Stents to Reduce Late Coronary Arterial Thrombotic Events; 
EXCELLENT,64 Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting; 
ISAR-SAFE,66 Intracoronary Stenting and Antithrombotic Regimen: Safety And EFficacy of 6 
Months Dual Antiplatelet Therapy After Drug-Eluting Stenting; I-LOVE-IT 2,67  Evaluate Safety 
and Effectiveness of the Tivoli DES and the Firebird DES for Treatment of Coronary 
Revascularization 2; ITALIC,72 Is There A LIfe for DES After Discontinuation of Clopidogrel; 
IVUS-XPL, Impact of Intravascular Ultrasound Guidance on Outcomes of Xience Prime stents 
in Long lesions; NIPPON,73 Nobori Dual Antiplatelet Therapy as Appropriate Duration; 
OPTIDUAL,74 OPTImal DUAL Antiplatelet Therapy; OPTIMIZE, Optimized Duration of 
Clopidogrel Therapy Following Treatment With the Zotarolimus-Eluting Stent in Real-World 
Clinical Practice; OR, odds ratio; PRODIGY,75 Prolonging Dual Antiplatelet Treatment After 
Grading Stent-Induced Intimal Hyperplasia; RESET,62 REal Safety and Efficacy of 3-month dual 
antiplatelet Therapy following Endeavor zotarolimus-eluting stent implantation; SECURITY,65 
Second Generation Drug-Eluting Stent Implantation Followed by Six- Versus Twelve-Month 
Dual Antiplatelet Therapy.  
 
R Code for Fig. 5: Network Meta-Analysis for DAPT Mortality and Caterpillar Plot  
 
#Export data from Excel in comma-separated format containing a csv suffix, which is the best way to 
input data into [R}. Remember that "Z:" is a common designation of the hard disk on a Mac running 
Windows, but "C:" is used on a PC. Remember also to replace "johnbittl" with your user name on your 
computer, "Dropbox" and "BayesReview" with your folder names, and "NetworkDAPTDeath.csv" with your file 
name:     
DDdat<-read.csv("Z:/Users/johnbittl/Dropbox/BayesReview/NetworkDAPTDeath.csv",as.is=TRUE, header=T) 
str(DDdat) 
s<-c(DDdat$s) 
t<-c(DDdat$t) 
r<-c(DDdat$r) 
nn<-c(DDdat$nn) 
b<-c(DDdat$b) 
#Specify the model in BUGS language, but save it as a string in [R] 
modelString=" 
model 
{ # i counts the two arms of all 14 studies 
for (i in 1:28) 
{ 
r[i] ~ dbin(p[i], nn[i]); 
logit(p[i]) <- mu[s[i]]+delta[i]*(1-equals(t[i],b[i])); 
delta[i] ~ dnorm(md[i], prec); 
md[i] <- d[t[i]]-d[b[i]]; 
} 
# j represents the CABG arm 
for (j in 1:14) 
{ 
mu[j] ~ dnorm(0, .001); 
} 
prec ~ dgamma(0.001, 0.001); 
d[1] <- 0; 
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# K represents the relative treatment comparator: k1 = Short, k=2 is 12 mo, k=3 is Long 
for (k in 2:3) 
{ 
d[k] ~ dnorm(0, .001) 
} 
for (c in 1:2) 
{ 
for (k in (c+1):3) 
{ 
lor[c,k] <- d[k]-d[c]; 
log(or[c,k]) <- lor[c,k]; 
} 
} 
} 
  " 
# Write the modelString to a file 
writeLines (modelString,con="model.txt") 
# Use BRugs to check model 
modelCheck ("model.txt") 
#load data 
dataList = list(s=c(s), 
     t=c(t), 
     r=c(r), 
     nn=c(nn), 
     b=c(b) 
) 
 
#Use BRugs commands to put the data into a file and ship the file to BUGS 
modelData(bugsData(dataList)) 
#Initialize the chains 
nChain=1 
modelCompile(numChains = nChain) #Compile the model 
initsList = list(d=c(NA,0,0), prec=1, mu=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
modelInits(bugsData(initsList)) 
modelGenInits() 
#R defines a new variable to specify an arbitrary chain length 
chainLength1 = 5000 
#BRugs tells BUGS to generate a MCMC chain 
modelUpdate (chainLength1) 
#BRugs keeps a record of parameters 
samplesSet(c("lor")) 
#BRugs asks BUGS for summary statistics 
chainLength2 = 10000 
thinStep = 2 
modelUpdate (chainLength2) 
thetaSummaryObs = samplesStats (c("lor")); thetaSummaryObs 
thetaSummaryObs<-thetaSummaryObs[order(thetaSummaryObs$mean),] 
expTheta<-exp(thetaSummaryObs) 
print(thetaSummaryObs) 
print(expTheta) 
#forest plot 
x<-seq(from=-0.8,to=0.6,by=0.01) 
#Short vs. 12 mo 
x<-thetaSummaryObs$mean 
y<-c(1,2,3) 
plot(x,y,xlim=c(-0.7,0.6),ylim=c(3.5,0),pch=23,cex=4,ylab="",yaxt="n",col="black",bg="lightblue", 
cex.axis=1.0, xlab="log(e)OR", cex.lab=1.6) 
axis (4, pos=0.0, tck = 0, labels=FALSE, col="black") 
text (-0.555,1,"3-6 mos vs. 12 mos", cex= 1.4) 
text (-0.53,3,"3-6 mos vs. 18-48 mos",cex = 1.4) 
text (-0.54,2, "12 mos vs. 18-48 mos", cex = 1.4) 
text (0, 0,"All-Cause Mortality",cex = 1.6,font =2) 
text (0.4, 0.6, "Short DAPT Better",cex=1.6,font=3) 
text (-0.4, 0.6, "Long DAPT Better",cex=1.6,font=3) 
text (thetaSummaryObs$mean[3], 3.2, font=2, round(expTheta$mean[3],2)) 
text (thetaSummaryObs$val2.5pc[3], 3.2, font=2,round(expTheta$val2.5pc[3],2)) 
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#text (thetaSummaryObs$val97.5pc[3], 3.2, font=2,round(expTheta$val97.5pc[3],2)) 
text (thetaSummaryObs$val97.5pc[3], 3.2, font=2,"1.60") 
text (thetaSummaryObs$mean[1],1.2,font=2,round(expTheta$mean[1],2)) 
#text (thetaSummaryObs$val2.5pc[1], 1.2, font=2,round(expTheta$val2.5pc[1],2)) 
text (thetaSummaryObs$val2.5pc[1], 1.2, font=2,"0.70") 
text (thetaSummaryObs$val97.5pc[1], 1.2, font=2,round(expTheta$val97.5[1],2)) 
text (thetaSummaryObs$mean[2], 2.2,  font=2,round(expTheta$mean[2],2)) 
text (thetaSummaryObs$val2.5pc[2], 2.2,  font=2,round(expTheta$val2.5pc[2],2)) 
text (thetaSummaryObs$val97.5pc[2], 2.2,  font=2,round(expTheta$val97.5pc[2],2)) 
segments(thetaSummaryObs$val2.5pc[3], 3, thetaSummaryObs$mean[3]-0.025, 3, lty=1, col="black", lwd=3) 
segments(thetaSummaryObs$val97.5pc[3], 3, thetaSummaryObs$mean[3]+0.025, 3, lty=1, col="black", lwd=3) 
segments(thetaSummaryObs$val2.5pc[1], 1, thetaSummaryObs$mean[1]-0.025, 1, lty=1, lwd=3) 
segments(thetaSummaryObs$val97.5pc[1], 1, thetaSummaryObs$mean[1]+0.025, 1, lty=1,  lwd=3) 
segments(thetaSummaryObs$val2.5pc[2], 2, thetaSummaryObs$mean[2]-0.025, 2, lty=1,  lwd=3) 
segments(thetaSummaryObs$val97.5pc[2], 2, thetaSummaryObs$mean[2]+0.025, 2, lty=1,  lwd=3) 
mtext ("Posterior Odds Ratio (OR)",3, line =2, cex = 1.6) 
axis (3, at=c(-0.91,-0.69, -0.51,-0.35, -0.22, -0.105,0.0, 0.095,0.182, 0.262,0.336, 
0.405,0.47,0.531,0.588,0.693, 0.833, 0.956, 1.10,1.19, 1.281,1.386,1.46,1.53,1.61,1.67,1.72,1.79), 
labels=c(0.4,0.5,0.6, 0.7, 0.8,0.9, "1.0", 1.1,1.2, 1.3,1.4,1.5, 1.6,1.7, 1.8, "2.0", 2.3, 2.6, "3.0", 
3.3,3.6,"4.0",4.3,4.6,"5.0",5.3,5.6,"6.0")) 
#To create good margins 
mar.default <- c(5,4,4,2) + 0.0 
par(mar = mar.default + c(0, 2, 0, 0)) 
#To copy in eps and pdf formats to your original folder. (Change the date each time or you will 
overwrite.) 
dev.copy2eps(file="NetworkDAPTDeathJun10Caterpillar.eps") 
dev.copy2pdf(file="NetworkDAPTDeathJun10Caterpillar.pdf") 
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Supplemental Appendix E: Hierarchical Model for Cross-Design Meta-Analysis 
 
 Justification: In this setting a hierarchical model is appropriate, because when we have 
uncertainty about a parameter such as θ, which reflects the overall treatment difference between 
the 2 PCI strategies, we make inferences about it. When other parameters such as 𝑂𝑂𝑂𝑂𝑖𝑖(𝑘𝑘), 
reflecting treatment differences from studies i = 1,…n of study type k = 1,…n, are also uncertain 
but dependent on an uncertain parameter such as θ, we have a chain of uncertainty, formalized in 
a hierarchical model.3  
 
 Selection of priors: Following the guidance of published reports,77, 78 we choose vague 
prior distributions for the parameters θ, σ2 and 𝜏𝜏𝑘𝑘2.1, 17 Specifically, for θ, the overall population 
effect, a relatively vague prior distribution is specified on the basis that that the global summary 
OR is unlikely to exceed 500 in favor of either culprit vessel-only or multivessel PCI, and 
therefore a prior distribution has the standard deviation loge(500)/1.96 = 3.17, or 𝜃𝜃~N[0, 10].1  
 
 A prior distribution for each 𝜏𝜏𝑘𝑘2 is based on the assumption that were 95% sure that the 
true underlying risk ratio for a particular type will be within a range from 4x to ¼ the overall risk 
of that type, which means that the upper 95% point of the prior for each 𝜏𝜏𝑘𝑘is loge(16)/(2.1.96) = 
0.71. A half-normal distribution 𝜏𝜏𝑘𝑘~HN[0.362] has this property.1 
 
 Likewise, a prior for the between-type variance 𝜎𝜎2 can be derived from assuming 95% 
belief that the underlying risk ratio for a particular study type will less than 2x or more than ½ 
the overall population effect. On this basis, a half-normal prior distribution σ~HN[0.182] is 
used.1  
 

Despite the subjectiveness of the priors, they represent reasonable guesses for the 
magnitudes and ranges of the parameters. On the other hand, because only 3 study designs are 
included, both the mean and variance estimates for θ would have been imprecise if they are 
inferred from noninformative priors. 

 
Data for Cross-Design Meta-Analysis 

Study 
Year 

of 
Report 

Follow-
Up 

(days) 

Number Enrolled Number with 
Events Study 

Type 
Multivessel Culprit Multivessel Culprit 

Randomized controlled trials 
Di Mario et al79 2004 365 52 17 1 0 1 
Politi et al80 2010 900 65 84 6 13 1 
Wald et al81 2013 700 234 231 12 16 1 
Gershlick et al82 2015 365 150 146 4 10 1 
Total    501 478 23 39  
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Matched cohort studies 
Roe et al83 2001 180 79 79 19 13 2 
Hannan et al84 2010 1260 503 503 59 54 2 
Iqbal et al85 2014 365 403 2418 41 164 2 
Total    985 3000 119 231  
Other observational studies 
Corpus et al86 2004 365 26 354 5 42 3 
Qarawani et al87 2008 365 95 25 9 2 3 

Varani et al88 2008 
In- 

hospital 147 156 12 8 3 

Cavender et al89 2009 In-
hospital 3134 25802 246 1321 3 

Dziewerz et al90 2010 365 70 707 11 57 3 
Toma et al91 2010 90 217 1984 27 111 3 

Bauer et al92 2013 In-
hospital 419 2118 6 72 3 

Jaguszewski et 
al93 2013 In-

hospital 1108 3833 81 168 3 

Jeger et al94 2014 365 442 1467 12 40 3 

Santos et al95 2014 in-
hospital 77 180 2 14 3 

Manari et al96 2014 730 367 706 26 127 3 
Total 
observational 
studies 

  6102 37322 437 1962  

TOTAL   7588 40810 579 2232  
Study types, 1 = randomized controlled trial, 2 = matched cohort study, 3 = other type of 
observational study. 
 
[R] code for Fig. 7: Bayesian cross-design meta-analysis using imbedded data 
 
#Specify the model in BUGS language, but save it as a string in [R] 
modelString=" 
model 
{ 
# K1 is the number of trials; 
for (k in 1:18) 
{ 
# calculate odds ratios; 
or[k] <- ((r.multi[k]+0.5)/(n.multi[k]-
r.multi[k]+0.5))/((r.culprit[k]+0.5)/(n.culprit[k]-r.culprit[k]+0.5)) 
logor[k] <- log(or[k]); 
varlogor[k] <- (1/(r.multi[k]+0.5))+(1/(n.multi[k]-
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r.multi[k]+0.5))+(1/(r.culprit[k]+0.5))+(1/(n.culprit[k]-r.culprit[k]+0.5)); 
invlogor[k] <- 1/varlogor[k]; 
logor[k] ~ dnorm(theta[k], invlogor[k]); 
or.est[k] <- exp(theta[k]); 
# study-type level random-effects distributions 
theta[k] ~ dnorm(mu.theta.study[study[k]], prec.theta.study[study[k]]); 
} 
# K2 is the number of study types 
for (l in 1:3) 
{ 
mu.theta.study[l] ~ dnorm(mu.theta, prec.theta); 
or.theta.study[l] <- exp(mu.theta.study[l]); 
prec.theta.study[l] <- 1/(tau.theta.study[l]*tau.theta.study[l]); 
# prior distribution for tau.theta.study based on HN[0.36^2], giving precision 7.72 
tau.theta.study[l] ~ dnorm(0, 7.72)I(0,); 
}  
# prior distribution for mu.theta based on log(500)/1.96 = 3.17 for N[0,10], giving 
precision 0.1 
mu.theta ~ dnorm(0, 0.1); 
# prior distribution for tau.theta based on HN[0.18^2], giving precision 30.86 
tau.theta ~ dnorm(0, 30.86)I(0,); 
prec.theta <- 1/(tau.theta*tau.theta); 
# global summary odds ratio; 
or.theta <- exp(mu.theta); 
# K1 is the number of trials; 
# DATA list(K1=21, K2=3); 
# INITIAL VALUES list(mu.theta=0, tau.theta = 1); 
# BUGS model specification ends 
} . 
 
  " 
# Write the modelString to a file 
writeLines (modelString,con="model.txt") 
# Use BRugs to check model 
modelCheck ("model.txt") 
#load data 
dataList = list(n.multi=c(52, 65, 234, 150, 79, 503, 403, 26, 95, 147, 3134, 70, 217, 
419, 1108, 442, 77, 367), 
     n.culprit=c(17, 84, 231, 146, 79, 503, 2418, 354, 25, 156, 25802, 707, 1984, 
2118, 3833, 1467, 180, 706), 
     r.multi=c(1, 6, 12, 4, 19, 59, 41, 5, 9, 12, 246, 11, 27, 6, 81, 12, 2, 26), 
     r.culprit=c(0, 13, 16, 10, 13, 54, 164, 42, 2, 8, 1321, 57, 111, 72, 168, 40, 14, 
127), 
     study=c(1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3) 
) 
 
#Use BRugs commands to put the data into a file and ship the file to BUGS 
modelData(bugsData(dataList)) 
#Initialize the chains 
nChain=1 
modelCompile(numChains = nChain) #Compile the model 
initsList = list(mu.theta=0, tau.theta=1) 
modelInits(bugsData(initsList)) 
modelGenInits() 
#R defines a new variable to specify an arbitrary chain length 
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chainLength1 = 5000 
#BRugs tells BUGS to generate a MCMC chain 
modelUpdate (chainLength1) 
#BRugs keeps a record of parameters 
samplesSet(c("mu.theta","prec.theta","or.theta","tau.theta")) 
#BRugs asks BUGS for summary statistics 
chainLength2 = 10000 
thinStep = 2 
modelUpdate (chainLength2) 
thetaSummary = samplesStats (c("mu.theta","prec.theta","or.theta","tau.theta"));  
print(thetaSummary) 
 

output 
> source("Z:\\Users\\jabittl\\Dropbox\\BayesCulpritCCI\\BRugs18StudiesCrossDesign.R") 
model is syntactically correct 
data loaded 
model compiled 
Initializing chain 1:  
initial values generated, model initialized 
5000 updates took 0 s 
monitor set for variable 'mu.theta' 
monitor set for variable 'prec.theta' 
monitor set for variable 'or.theta' 
monitor set for variable 'tau.theta' 
10000 updates took 0 s 
                mean        sd           MC_error  val2.5pc   median    val97.5pc  start   sample 
mu.theta   8.358e-02 1.803e-01 6.970e-03 -0.301500  0.09143 4.089e-01  5001  10000 
prec.theta 1.080e+05 2.844e+06 8.695e+04  6.367000 47.98000 2.273e+04  5001  10000 
or.theta   1.105e+00 1.959e-01 7.564e-03  0.739700  1.09600 1.505e+00  5001  10000 
tau.theta  1.579e-01 1.063e-01 3.704e-03  0.006652  0.14440 3.964e-01  5001  10000 
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