Comprehensive risk-factor management is the cornerstone of therapy in women and men with known cardiovascular disease (CVD). Therapeutic interventions can be summarized in an “ABC” format (Table).1–3 CVD death rates have declined in men and older women during the past decade.4 By contrast, there has been a significant rise in CVD deaths among younger women.5 Evidence-based therapies, including aspirin use, have been believed to account for half of the decline in CVD death rates, whereas improvement in risk factors, including lower cholesterol and blood pressure, accounts for the other half.6

Table. ABCs of CVD Therapies

<table>
<thead>
<tr>
<th>Treatment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Antiplatelet agents</td>
</tr>
<tr>
<td></td>
<td>Antianginal agents</td>
</tr>
<tr>
<td></td>
<td>ACEI/ARBs</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>β-Blockers</td>
<td></td>
</tr>
<tr>
<td>Blood pressure control</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Cholesterol management</td>
</tr>
<tr>
<td></td>
<td>Cigarette smoking cessation</td>
</tr>
<tr>
<td>D</td>
<td>Diet/weight management</td>
</tr>
<tr>
<td></td>
<td>Diabetes prevention/management</td>
</tr>
<tr>
<td>E</td>
<td>Exercise/rehabilitation</td>
</tr>
<tr>
<td></td>
<td>Ejection fraction</td>
</tr>
<tr>
<td>F</td>
<td>Fish (ω-3) oils</td>
</tr>
<tr>
<td></td>
<td>Follow-up</td>
</tr>
</tbody>
</table>

ACEI indicates angiotensin-converting enzyme inhibitors; ARBs, angiotensin receptor blockers.

One limitation of the 2002 meta-analysis is the lack of sex-specific or age-specific subgroup data. In the previous 1994 meta-analysis by the Antiplatelet Trialists, sex-specific data were analyzed from 29 trials with 40000 men and 10000 women with known CVD.8 Women derived as much benefit as did men from aspirin.8

In patients without known CVD, the picture is less clear. In the primary prevention setting, aspirin reduces the risk of myocardial infarction but not stroke in men, and reduces the risk of stroke but not myocardial infarction in women.10,11 There has been little or no benefit for aspirin in reducing death (CVD or all cause) in men or women without known CVD. Aspirin did not prevent CVD in asymptomatic Japanese patients with diabetes in the primary prevention setting unless they were age 65 or older.12 Guidelines recommend using aspirin for primary prevention in higher risk men and women who have increased event rates and a greater benefit-to-risk ratio.13

In this issue of *Circulation: Cardiovascular Quality and Outcomes,* Berger et al14 examined aspirin use and dose in relation to clinical outcomes in 8928 postmenopausal women with known CVD followed up for 6.5 years in the Women’s Health Initiative (WHI) Observational Study. After controlling for potential confounders, women who reported taking aspirin had a lower risk of myocardial infarction but not stroke than those who did not take aspirin.14 In this study, the benefit of aspirin use was observed in older women and in those with a history of CVD, but not in younger women.14

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

From the Divisions of Cardiovascular Disease and Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass.

Correspondence to Samia Mora, MD, MHS, Brigham and Women’s Hospital, 900 Commonwealth Avenue E, Boston, MA 02215. E-mail smora@partners.org

Circ Cardiovasc Qual Outcomes is available at http://circoutcomes.ahajournals.org

DOI: 10.1161/CIRCOUTCOMES.109.854851
aspirin at least 3 times a week had significant risk reductions in all-cause death (14%) and CVD death (25%) compared with nonusers. There was also a 10% risk reduction in composite CVD events (including nonfatal myocardial infarction) that did not reach statistical significance. An aspirin dose of 81 mg was comparable with 325 mg for preventing clinical events in 2072 women who were matched on risk factors and other potential confounders.

Although the present WHI study is an observational study, it adds to previous findings from randomized clinical trials. The use of propensity scores to control for confounding may not completely balance unmeasured confounders as would randomization in a clinical trial, but it may reduce confounding when determinants of drug use are multifactorial, as in the case of aspirin.15 The magnitude of the benefit associated with aspirin use was similar to the estimates obtained from meta-analyses of clinical trials, as was the consistency of benefit with lower versus higher doses of aspirin for preventing clinical outcomes.8,9

Finally, the most striking finding of this WHI study is the low use of aspirin and other proven therapies in community women with known CVD (1994–1998). Less than 1 in 2 women in the study were taking aspirin, and rates were lower in black women and those with Medicaid insurance. Statin and β-blocker use in the study was even lower than aspirin, with <1 in 4 women taking statins or β-blockers, a rate similar to their use of nonsteroidal anti-inflammatory drugs.

We learned from the WHI and Heart and Estrogen/Progestin Replacement Study randomized clinical trials that estrogen and progestosterone therapy did not confer cardiovascular protection and may increase CVD risk in postmenopausal women.16,17 An important lesson from this WHI observational study is that lifesaving therapies, including aspirin, β-blockers, and statins, continue to be substantially underused in postmenopausal women with known CVD. Our greatest challenge remains the wider implementation of the ABCs of CVD treatment and prevention in both men and women.

Sources of Funding
Dr Mora has received research grant support from the American Heart Association (0670007N), the National Heart, Lung, and Blood Institute (K08 HL094375), the Sandra A. Daugherty Foundation, a Lerner Young Investigator Award, Merck, and Astra-Zeneca and speaking honorarium from Pfizer for an educational (nonpromotional) activity.

Disclosures
None.

References
Aspirin Therapy in Women: Back to the ABCs
Samia Mora

Circ Cardiovasc Qual Outcomes. 2009;2:63-64
doi: 10.1161/CIRCOUTCOMES.109.854851
Circulation: Cardiovascular Quality and Outcomes is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7705. Online ISSN: 1941-7713

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/2/2/63

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/