Observational Comparative Effectiveness Research: Comparative Effectiveness and Caveat Emptor

Pamela N. Peterson, MD, MSPH; Paul D. Varosy, MD

Recent legislation has emphasized comparative effectiveness, including both the American Recovery and Reinvestment Act of 2009 and the Patient Protection and Affordable Care Act of 2010, which established the Patient Centered Outcomes Research Institute (PCORI) to foster comparative effectiveness research (CER). Defined as “the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition or to improve the delivery of care,” the intent of CER is to assist stakeholders, including patients and clinicians, with making informed decisions to improve health. Although many stakeholders are hopeful that CER will improve health and increase the value of care provided, it is not uniformly accepted that CER will achieve these important goals. In particular, the use of nonexperimental observational methods is questioned by some.

Skepticism around observational CER is warranted. Indeed, observational studies have inherent limitations, including several potential sources of bias and confounding that may threaten the validity of findings. The effect of hormone replacement therapy (HRT) on cardiovascular outcomes is a notorious example. In the 1990s, high-profile publications demonstrated lower risk of cardiovascular outcomes associated with use of HRT in women. Subsequently, randomized trials determined that HRT was actually harmful with respect to cardiovascular outcomes. With the proper perspective, however, observational studies can contribute useful evidence and have an important role in CER. In fact, there is great appeal to using observational data to efficiently answer multiple important scientific questions where costs and/or other factors make performing trials impractical.

In this issue, Reynolds and colleagues present an observational clinical comparative effectiveness analysis of catheter ablation versus antiarrhythmic therapy for the prevention of stroke or transient ischemic attack among patients with atrial fibrillation (AF). The comparative effectiveness and safety of medical antiarrhythmic therapy and catheter ablation of AF are of great importance. AF is a common and increasingly more prevalent problem that carries an increased risk of stroke. The authors used a large administrative claims dataset to identify patients with a diagnosis of AF who received an ablation procedure or antiarrhythmic therapy. In a propensity score-matched analysis, further adjusted for multiple measured confounders, ablation therapy was associated with a 40% lower risk of stroke or transient ischemic attack and no significant difference in heart failure admissions compared with antiarrhythmic drug therapy. The authors clearly and appropriately state that the advanced statistical methods used cannot account for unmeasured differences between the patient groups. We agree and believe that the observed association of AF ablation with apparently lower risk of stroke in this study should be interpreted with great caution.

A key concern in comparative effectiveness analyses using observational data are confounding by indication, or treatment selection bias. Investigators do not have control over treatment assignment, but, rather, clinicians and patients make treatment decisions. Propensity score analysis balances the observed characteristics of patients nonrandomly assigned to different treatments and reduces treatment selection bias. Many factors that influence patient selection for AF ablation, however, may not be documented in a medical chart and are certainly not available through claims data. For example, duration of atrial fibrillation, left atrial size, functional status, and symptom burden may influence the choice of treatment and also affect outcomes but were not available for analysis. It is remarkable that the majority of ablation patients could not be paired with nonablation control subjects. The match rate of 25% highlights that the patients who received ablation generally differed substantially from those receiving antiarrhythmic therapy on measured variables and suggests that confounding by indication, or treatment selection bias, is an important concern in the study interpretation.

Similar to confounding by indication, other unmeasured confounding, and the “healthy user effect” may also threaten the validity of findings in CER. When a number of measured variables are available, they can collectively represent, in part, the effect of unmeasured confounders. In this sense the propensity score, which uses available measured variables, serves as a proxy for unmeasured factors that are dependent on measured factors. However, propensity score methods cannot balance unobserved confounders that are independent of the observed confounders. To assess for potential healthy user effect, Reynolds and colleagues examined admission for
Lenges include the protection of private health information datasets, as described above, is costly and complex. Challenges include the protection of private health information datasets, but also have limitations. Creating robust clinical data, including patient-centered outcomes, such as health status.

Although a number of observational data sources are available, including patient-centered outcomes, such as health status. Detailed clinical information for risk adjustment; 4) include information on treatment decision-making from the patient and provider perspective; and 5) track longitudinal outcomes, such as health status. Although a number of observational data sources are available, many lack 1 or more of these components. Integrated health care systems such as the VA provide the most robust data, but also have limitations. Creating robust clinical datasets, as described above, is costly and complex. Challenges include the protection of private health information and connectivity of health information systems, in addition to ensuring that the data collected are valid. The investment in creating such rich datasets, financial and otherwise, is necessary for CER to achieve its intended goals.

Of critical importance is how the results of observational studies are interpreted and used. In the case of HRT, millions of women received therapy, in the absence of other indications, with the sole intent of reducing cardiovascular risk. The findings of the current study of AF therapies should stimulate further study; however, they should not be interpreted as adequate to advocate for the use of catheter ablation of AF as a stroke-reduction strategy. A randomized trial, CABANA, is underway, which will provide additional data on the longitudinal safety and efficacy of atrial fibrillation ablation and the procedure’s effects on the risk of stroke.

Although this study should be interpreted with caution and should not change practice, it does provide important insights into the real world outcomes of patients undergoing catheter ablation. Even with the limitations of observational data, the authors used the most rigorous possible statistical methods and appropriately framed the findings in the context of the limitations of the data. Further, the finding of a relatively low risk of hospitalizations for stroke among the patients who underwent AF ablation is somewhat reassuring about the safety of AF ablation, as it is currently employed in practice. It is certain that observational studies will play an important role in CER, particularly, if the various emitters (stakeholders) adequately consider the relevant caveats. It is critical that researchers apply the highest quality methods and are honest about potential limitations, exactly as Reynolds and colleagues have done. Similarly, healthcare decision-makers must understand the relative strengths and weaknesses of various types of evidence. Finally, it is critical that all stakeholders interpret results cautiously and in the context of a larger body of evidence. Meanwhile, concerted efforts to develop data sources that enhance the validity of observational CER will ensure that such studies provide the most useful information to clinicians and their patients.

Sources of Funding

Funded in part by a Research Career Development Award (RCD 04-115-2 to Paul D. Varosy) from the Veterans Administration Office of Health Services Research and Development and K08 award from the Agency for Healthcare Research and Quality to Pamela N. Peterson.

Disclosures

None.

References

Key Words: Editorials ■ arrhythmia ■ atrial fibrillation ■ comparative effectiveness ■ stroke
Observational Comparative Effectiveness Research: Comparative Effectiveness and Caveat Emptor
Pamela N. Peterson and Paul D. Varosy

Circ Cardiovasc Qual Outcomes. 2012;5:150-152
doi: 10.1161/CIRCOUTCOMES.112.965574
Circulation: Cardiovascular Quality and Outcomes is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7705. Online ISSN: 1941-7713

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/5/2/150

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/