Risks and Benefits of Anticoagulation in Atrial Fibrillation
Insights From the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) Registry

Michael W. Cullen, MD; Sunghee Kim, MS, PhD; Jonathan P. Piccini Sr, MD, MHS; Jack E. Ansell, MD; Greg C. Fonarow, MD; Elaine M. Hylek, MD, MPH; Daniel E. Singer, MD; Kenneth W. Mahaffey, MD; Peter R. Kowey, MD; Laine Thomas, PhD; Alan S. Go, MD; Renato D. Lopes, MD, PhD; Paul Chang, MD; Eric D. Peterson, MD, MPH; Bernard J. Gersh, MB, ChB, DPhil; on behalf of the ORBIT-AF Investigators

Background—Patients with atrial fibrillation (AF) at the highest stroke risk derive the largest benefit from oral anticoagulation (OAC). Those with the highest stroke risk have been paradoxically less likely to receive OAC. This study assessed the association between stroke and bleeding risk on rates of OAC.

Methods and Results—We analyzed OAC use among 10 098 patients with AF from 174 community-based outpatient practices enrolled in 2010–2011 in the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). OAC was defined as warfarin or dabigatran use at study enrollment. Stroke and bleeding risk were calculated using congestive heart failure, hypertension, age, diabetes mellitus, prior stroke (CHADS2), and anticoagulation and risk factors in AF (ATRIA) scores, respectively. The mean subject age was 73 years; 58% were men. Overall, 76% of patients received OAC (71% warfarin and 5% dabigatran). The use of OAC increased among those with higher CHADS2 scores, from 53% for CHADS2=0 to 80% for CHADS2≥2 (P<0.001). OAC use fell slightly with increasing ATRIA bleeding risk score, from 81% for ATRIA=3 to 73% for ATRIA≥5 (P<0.001). A significant interaction existed between ATRIA and CHADS2 scores (P=0.021). Among those with low bleeding risk, use of OAC increased significantly with increasing stroke risk. Among those with high bleeding risk, CHADS2 stroke risk had a smaller impact on use of OAC.

Conclusions—In community-based outpatients with AF, use of OAC was high and driven by not only predominantly stroke but also bleeding risk. Stroke risk significantly affects OAC use among those with low bleeding risk, whereas those with high bleeding risk demonstrate consistently lower use of OAC regardless of stroke risk. (Circ Cardiovasc Qual Outcomes. 2013;06:461-469.)

Key Words: anticoagulants ■ atrial fibrillation ■ hemorrhage ■ risk factors ■ stroke prevention

Atrial fibrillation (AF) is the most common cardiac arrhythmia.1 Guidelines strongly and uniformly recommend anticoagulation in patients with AF and risk factors for cardioembolic events to mitigate the likelihood of stroke or thromboembolism.2–5 The benefits of oral anticoagulant therapy are directly proportional to the underlying stroke risk as measured by the congestive heart failure, hypertension, age, diabetes mellitus, prior stroke (CHADS2) or congestive heart failure or left ventricular systolic dysfunction, hypertension, age, diabetes mellitus, prior stroke, vascular disease, and sex (CHA2DS2-VASc scores.6 Despite the documented benefits of anticoagulation in high-risk patients, several prior studies have found that those with higher CHADS2 scores are less likely to receive anticoagulation compared with healthier patients at lower risk for thromboembolism. This risk-treatment paradox with AF has been described in patients after acute ischemic stroke or transient ischemic attack,7 in patients hospitalized for heart failure,8 and in patients with acute coronary syndromes.9,10

The reasons for these patterns remain unclear. One hypothesis suggests that providers may withhold anticoagulation from...
WHAT IS KNOWN

- Patients with atrial fibrillation at the highest risk of stroke derive the greatest benefit from anticoagulation with regard to reduction of thromboembolic risk.
- Prior work has demonstrated that patients at higher risk of stroke are paradoxically less likely to receive anticoagulation, but these studies have occurred in acutely ill patients and have not necessarily analyzed this phenomenon according to patients’ bleeding risk.

WHAT THE STUDY ADDS

- This study found that, in a population of stable outpatients with atrial fibrillation enrolled in the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation, rates of oral anticoagulation increased commensurate with patients’ stroke risk.
- Furthermore, although bleeding risk influenced decisions on anticoagulation, stroke risk demonstrated a larger effect on provision of anticoagulation than bleeding risk.
- These findings suggest that the risk-treatment paradox observed in hospitalized patients does not occur and that stroke risk drives decisions on anticoagulation more than bleeding risk in stable, community-based outpatients with atrial fibrillation.

patients on the basis of a perception of a higher risk of bleeding. Many components of stroke risk also impact bleeding risk in patients on oral anticoagulation (OAC), so it is possible that physicians are opting for a more conservative do-no-harm strategy. Given that the risk-treatment paradox phenomenon has been described largely in hospitalized patients, it is possible that the acuity of these patients’ illnesses influences decisions to provide OAC. Whether the risk-treatment paradox exists in a stable, community-based outpatient AF population remains unknown.

The Outcomes Registry for Better Informed Treatment of AF (ORBIT-AF) is a prospective registry of community-based outpatient AF management. In this study, we used ORBIT-AF to assess use of OAC in community outpatients with AF. Our goals were to determine how the provision of OAC varied as a function of stroke risk, defined by CHADS_{2} score, and bleeding risk, defined by the anticoagulation and risk factors in AF (ATRIA) score. We also sought to test the hypothesis that bleeding risk changes the effect of stroke risk on prescribed rates of OAC by assessing the interaction of these 2 competing risk dimensions on rates of OAC in the ORBIT-AF population.

Methods

Study Design

The rationale and study design of ORBIT-AF have been previously described. Briefly, ORBIT-AF is a prospective registry of 10,098 patients enrolled from 174 heterogeneous centers throughout the United States. ORBIT-AF was designed to identify patterns in the characteristics and management of real-world community-based outpatients with AF. Inclusion criteria include adult patients with electrocardiographic evidence of AF. Patients with a life expectancy <6 months or transient AF because of a reversible condition, such as after cardiac surgery, were excluded. The study was approved by the institutional review board at all participating sites, and all participants provided informed consent for participation in ORBIT-AF.

Patient Population

This study included all patients in ORBIT-AF with complete baseline data. We excluded patients with moderate or severe mitral stenosis.

Outcome Measures

The primary outcome was OAC, defined as warfarin or dabigatran use at the time of study enrollment. During the enrollment period of June 2010 through August 2011, warfarin and dabigatran were the only available oral anticoagulants approved by the U.S. Food and Drug Administration. Patients were considered not receiving OAC if they were not taking either warfarin or dabigatran at the time of study enrollment. Secondary outcomes in this study included OAC use according to stroke and bleeding risk via the CHADS_{2} and ATRIA scores, respectively.

CHADS_{2} and CHA_{2}DS_{2}-VASc Scores

We calculated the CHADS_{2} score according to the formula CHADS_{2}=age≥75 years+2 (history of stroke or transient ischemic attack)+heart failure+diabetes mellitus+hypertension. We defined heart failure as previous symptoms of heart failure or a prior hospital admission with a principle diagnosis of heart failure. We defined other components of the CHADS_{2} score according to the participants’ medical history. Subjects with a CHADS_{2} score of 0, 1, 2, or 3 points were defined as having low, moderate, high, and very high stroke risk, respectively. Among patients with a CHADS_{2} score of 0, we stratified their stroke risk according to 4 additional parameters in the CHA_{2}DS_{2}-VASc score that are not part of the CHADS_{2} score. These included (1) left ventricular dysfunction without heart failure, (2) female sex, (3) 65 to 74 years of age, and (4) history of peripheral vascular disease, coronary artery disease, or aortic plaque.

ATRIA Score

We calculated the ATRIA score according to the formula ATRIA=3×anemia+3×renal disease+2×age≥75 years+prior bleed+hypertension. We defined anemia as a medical history of anemia. We defined renal disease by the estimated glomerular filtration rate<30 mL/min or dialysis dependent. We defined prior bleeding as a history of hemorrhagic stroke, any other intracranial bleeding, or clinically diagnosed gastrointestinal bleeding within the past 6 months. Subjects received 1 point for the presence and 0 points for the absence of each indicator variable, and we applied the multipliers on the basis of ATRIA score formula. The minimum ATRIA score was 0 points, and the maximum ATRIA score was 10 points. On the basis of thresholds of bleeding risk, we defined an ATRIA score of 0 to 3 as low and ≥4 as high.

Statistical Analysis

Baseline characteristics were described as median (interquartile range) for continuous variables or percent for categorical variables. Baseline characteristics between those who did versus did not receive prescriptions for OAC were compared using Wilcoxon rank-sum tests for continuous variables or Pearson χ^{2} tests for categorical variables. Given our large sample size, some P values comparing baseline characteristics between groups were highly significant, despite a small magnitude of absolute differences. Therefore, we have discussed only differences that are both clinically and statistically significant. Percentages of OAC use are presented as a point estimate and corresponding 95% confidence interval (CI). Pearson χ^{2} tests compared associations among CHADS_{2} scores, CHA_{2}DS_{2}-VASc scores, ATRIA scores, and OAC use. A secondary sensitivity analysis excluded patients with contraindications to OAC who were included in the primary analysis. These contraindications included need for dual antiplatelet therapy, inability to adhere with or monitor OAC, high occupational...
risk, high bleeding risk, prior intracranial hemorrhage, comorbid medical conditions such as liver or renal disease, prior bleeding, allergy to OAC, patient refusal, frequent falls, and pregnancy. For this analysis, the definition of prior bleeding included any gastrointestinal bleeding, regardless of whether it occurred in the past 6 months or more remotely. All analyses performed for the initial study cohort were also performed for the sensitivity analysis. Logistic regression tested the interaction between stroke risk (ie, CHADS2 score) and bleeding risk (ie, ATRIA score) on rates of OAC in both the primary and secondary sensitivity analyses. We performed this test for interaction to determine whether bleeding risk changed the association between stroke risk and OAC in both the primary analysis and the secondary sensitivity analysis cohorts. The logistic regression accounted for site variability with generalized estimating equations. We used $P \leq 0.05$ as our threshold for statistical significance. All analyses were performed using SAS version 9.3 (SAS Institute, Cary, NC).

Results

Baseline Characteristics

In ORBIT-AF, 10098 patients had complete baseline data. No patients were excluded for lack of data on OAC. We excluded 141 patients for moderate or severe mitral stenosis. The final study cohort included 9957 patients.

Of the 9957 study subjects, 7563 subjects (76.0%) received OAC at baseline. Among the patients who received OAC, 7070 (71.0%) received warfarin alone, 486 (4.9%) received dabigatran alone, and 7 (0.1%) received both warfarin and dabigatran. No patients received warfarin and dabigatran concomitantly. Overall, 58% of the study subjects were men, and 89% were white. As Table 1 shows, patients receiving OAC at baseline were older, less likely to have normal left ventricular systolic function, and more likely to have persistent or permanent AF than patients not receiving OAC. Patients receiving OAC were more likely to have a history of anemia, diabetes mellitus, heart failure, chronic kidney disease, hyperlipidemia, hypertension, obstructive sleep apnea, smoking history, previous stroke or transient ischemic attack, or implantable cardioverter-defibrillator (Table 1). Finally, patients receiving OAC were less likely to receive aspirin, clopidogrel, or dual antiplatelet therapy (Table 1).

OAC Use According to Stroke Risk

CHADS2 score data were missing for 1 patient. In the entire study population, 71.2% of the subjects had a high CHADS2 score ≥ 2. Patients with a higher CHADS2 score were more likely to receive OAC ($P < 0.001$; Table 1). Across the spectrum of CHADS2 scores, rates of OAC increased from 52.5% (95% CI, 48.7–56.3) among study subjects with a CHADS2 score of 0 to 80.0% (95% CI, 79.0–80.9) among those with a CHADS2 score ≥ 2 (Table 2; Figures 1 and 2A; $P < 0.001$).

Among 655 subjects with a CHADS2 score of 0, 230 subjects (35.1%) had no additional risk factors for stroke, and 425 subjects (64.9%) had ≥ 1 additional risk factor (Table 3). Rates of OAC increased from 44.8% (95% CI, 38.4–51.2) among those with no additional risk factors to 56.7% (95% CI, 52.0–61.4) among those with additional risk factors (Table 3; $P = 0.004$). Among all 311 patients with a CHADS2 score of 0 not receiving OAC, 217 subjects (69.8%) received aspirin without clopidogrel, 4 subjects (1.3%) received clopidogrel without aspirin, and 12 subjects (3.9%) received both aspirin and clopidogrel.

OAC Use According to Bleeding Risk

ATRIA score data were missing for 3 patients. As Table 1 demonstrates, 26.2% of the subjects had a high ATRIA score (≥ 4). Patients with a high ATRIA bleeding score were less likely to receive OAC ($P < 0.001$; Table 1). Rates of OAC decreased among those with higher ATRIA scores, dropping from 80.5% to 26.2% among those with higher ATRIA scores.

Table 1. Baseline Characteristics According to Anticoagulant Use

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Patients (n=9957)</th>
<th>No OAC (n=2394)</th>
<th>OAC (n=7563)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, median (IQR)</td>
<td>75 (67–82)</td>
<td>73 (63–82)</td>
<td>75 (68–82)</td>
<td><0.001</td>
</tr>
<tr>
<td>Men, %</td>
<td>58.0</td>
<td>57.6</td>
<td>58.1</td>
<td>0.65</td>
</tr>
<tr>
<td>White race, %</td>
<td>89.3</td>
<td>88.6</td>
<td>89.5</td>
<td>0.34</td>
</tr>
<tr>
<td>Heart rate, bpm, median (IQR)</td>
<td>70 (63–80)</td>
<td>70 (62–79)</td>
<td>70 (64–80)</td>
<td>0.008</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg, median (IQR)</td>
<td>126 (116–138)</td>
<td>126 (118–138)</td>
<td>125 (116–138)</td>
<td>0.067</td>
</tr>
<tr>
<td>Body mass index, kg/m2, median (IQR)</td>
<td>29 (25–34)</td>
<td>28 (25–33)</td>
<td>29 (26–34)</td>
<td><0.001</td>
</tr>
<tr>
<td>LVEF $\geq 50%$, %</td>
<td>70.2</td>
<td>73.4</td>
<td>69.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Family history of atrial fibrillation, %</td>
<td>14.7</td>
<td>14.7</td>
<td>14.7</td>
<td>0.95</td>
</tr>
<tr>
<td>Type of atrial fibrillation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New onset, %</td>
<td>4.7</td>
<td>7.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Paroxysmal, %</td>
<td>50.7</td>
<td>64.9</td>
<td>46.2</td>
<td></td>
</tr>
<tr>
<td>Persistent or permanent, %</td>
<td>44.5</td>
<td>28.0</td>
<td>49.7</td>
<td></td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia, %</td>
<td>18.1</td>
<td>20.6</td>
<td>17.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes mellitus, %</td>
<td>29.4</td>
<td>25.9</td>
<td>30.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Cancer, %</td>
<td>23.7</td>
<td>23.4</td>
<td>23.8</td>
<td>0.67</td>
</tr>
<tr>
<td>Cognitive impairment or dementia, %</td>
<td>3.0</td>
<td>3.8</td>
<td>2.8</td>
<td>0.011</td>
</tr>
<tr>
<td>CHF, %</td>
<td>32.1</td>
<td>26.2</td>
<td>34.0</td>
<td><0.001</td>
</tr>
</tbody>
</table>

(Continued)
(95% CI, 79.1–81.9%) among those with an ATRIA score of 3% to 63.8% (95% CI, 58.1–69.4%) among those with an ATRIA score ≥7 (Figure 2B; P<0.001).

Table 1. Continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Patients (n=9957)</th>
<th>No OAC (n=2394)</th>
<th>OAC (n=7563)</th>
<th>PValue*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic cardiomyopathy, %</td>
<td>13.0</td>
<td>12.2</td>
<td>13.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Hospitalized for CHF in past year, %</td>
<td>5.6</td>
<td>5.4</td>
<td>5.7</td>
<td>0.58</td>
</tr>
<tr>
<td>Coronary artery disease†, %</td>
<td>31.9</td>
<td>31.7</td>
<td>32.0</td>
<td>0.78</td>
</tr>
<tr>
<td>COPD, %</td>
<td>16.3</td>
<td>16.7</td>
<td>16.2</td>
<td>0.57</td>
</tr>
<tr>
<td>Chronic kidney disease, %</td>
<td>34.1</td>
<td>32.0</td>
<td>34.8</td>
<td>0.025</td>
</tr>
<tr>
<td>Dialysis dependent, %</td>
<td>1.3</td>
<td>2.0</td>
<td>1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Gastrointestinal bleeding‡, %</td>
<td>9.1</td>
<td>12.7</td>
<td>8.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Hyperlipidemia, %</td>
<td>71.9</td>
<td>67.4</td>
<td>73.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>83.0</td>
<td>77.2</td>
<td>84.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Implantable cardioverter-defibrillator, %</td>
<td>8.5</td>
<td>6.7</td>
<td>9.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Obstructive sleep apnea, %</td>
<td>18.2</td>
<td>16.1</td>
<td>18.9</td>
<td>0.002</td>
</tr>
<tr>
<td>Smoking history, %</td>
<td>48.5</td>
<td>47.0</td>
<td>48.9</td>
<td>0.099</td>
</tr>
<tr>
<td>Stroke or transient ischemic attack, %</td>
<td>15.0</td>
<td>10.8</td>
<td>16.3</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Laboratory data

<table>
<thead>
<tr>
<th></th>
<th>All Patients (n=9957)</th>
<th>No OAC (n=2394)</th>
<th>OAC (n=7563)</th>
<th>PValue*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum creatinine, mg/dL, median (IQR)</td>
<td>1.0 (0.9–1.3)</td>
<td>1.0 (0.9–1.3)</td>
<td>1.0 (0.9–1.3)</td>
<td>0.058</td>
</tr>
<tr>
<td>Hemoglobin, g/dL, median (IQR)</td>
<td>13.5 (12.3–14.6)</td>
<td>13.4 (12.1–14.6)</td>
<td>13.5 (12.3–14.7)</td>
<td>0.002</td>
</tr>
<tr>
<td>CHADS2 score <0.001</td>
<td>Low (0–1), %</td>
<td>28.8</td>
<td>40.7</td>
<td>25.1</td>
</tr>
<tr>
<td>High (≥2), %</td>
<td>71.2</td>
<td>59.3</td>
<td>74.9</td>
<td></td>
</tr>
<tr>
<td>ATRIA score <0.001</td>
<td>Low (0–3), %</td>
<td>73.7</td>
<td>70.9</td>
<td>74.6</td>
</tr>
<tr>
<td>High (≥4), %</td>
<td>26.2</td>
<td>29.0</td>
<td>25.4</td>
<td></td>
</tr>
</tbody>
</table>

Values are presented as % or median (IQR). ATRIA indicates anticoagulation and risk factors in atrial fibrillation; CHADS2, congestive heart failure, hypertension, age, diabetes mellitus, prior stroke; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; IQR, interquartile range; LVEF, left ventricular ejection fraction; and OAC, oral anticoagulation, defined as warfarin or dabigatran use at time of study enrollment.

*P values were calculated by comparing only nonmissing row values. P values are based on Pearson χ² tests for all categorical row variables. For all continuous or ordinal variables, P values are based on Wilcoxon rank-sum tests.

†Coronary artery disease was defined as history of prior myocardial infarction, coronary artery bypass grafting, percutaneous coronary intervention, or drug-eluting stent placement.

‡For the purposes of reporting baseline characteristics, gastrointestinal bleeding was defined as any clinical history of gastrointestinal bleeding, regardless of when it occurred. For the purposes of calculating the ATRIA score, the definition of prior bleeding included gastrointestinal bleeding in the past 6 mo. Of all subjects with any gastrointestinal bleeding, 16.1% had gastrointestinal bleeding within the past 6 mo.

§Aspirin only also includes patients treated with aspirin and dipyridamole (Aggrenox) with or without aspirin. Clopidogrel only includes patients treated with prasugrel or clopidogrel without aspirin. Both aspirin and clopidogrel also includes patients treated with aspirin and prasugrel.

OAC Use According to Stroke and Bleeding Risk

Comparing rates of OAC across levels of stroke and bleeding risk found highest rates of OAC among patients with high CHADS2 and low ATRIA scores (82.1%; 95% CI, 81.1–83.2; Table 2). Conversely, rates of OAC were lowest among patients with low CHADS2, and high ATRIA scores (63.8%; 95% CI, 58.1–69.4; Table 2). Among patients with a low bleeding risk, rates of OAC increased commensurate with stroke risk (Figure 1). Higher bleeding risk tended to decrease rates of OAC among patients with increasing stroke risk (Figure 1). Tests for interaction between low versus high CHADS2 and ATRIA scores found a significant relationship between bleeding and stroke risk on rates of OAC (Table 2; P=0.021). This suggests that differences in rates of OAC between those with low and high CHADS2 scores differ by ATRIA score. In patients with low ATRIA scores, rates of OAC increase more moving from low to high CHADS2 scores than they do in patients with high ATRIA scores.

Sensitivity Analysis

We performed a secondary sensitivity analysis to assess the impact of excluding those with contraindications to OAC. This analysis included all patients in the primary analysis along with those with contraindications.
In this group, 7097 subjects (82.9%) received OAC at baseline. Rates of OAC increased across the spectrum of CHADS\(_2\) scores, from 56.9% (95% CI, 52.9–60.9) among subjects with a CHADS\(_2\) score of 0 to 91.4% (95% CI, 88.9–93.9) among those with a CHADS\(_2\) score of 5 to 6 (P<0.001). Rates of OAC increased slightly with increasing ATRIA scores, from 82.3% (95% CI, 81.4–83.3) among those with a low ATRIA score ≤3 to 84.6% (95% CI, 83.1–86.2) among those with an ATRIA score ≥4 (P=0.037). Tests for interaction between low versus high CHADS\(_2\) and ATRIA scores did not find a significant relationship between bleeding and stroke risk on rates of OAC (P=0.090; Table 4).

Discussion

In this analysis of outpatients with AF, we found an overall rate of OAC of 76%. Rates of OAC increased with increasing stroke risk in patients with both high and low bleeding risks. This suggests, in this population of stable outpatients, that the risk-treatment paradox does not exist and that stroke risk primarily drives clinical decisions on provision of OAC.

Overall Rates of OAC

This study found a 76% rate of OAC among all patients and an 83% rate of OAC among those without contraindications to anticoagulation. Previous studies have documented a rate of anticoagulation of 50% to 65% in appropriate patients.\(^1\)\(^3\)–\(^1\)\(^6\) Many reasons may account for the higher rates of OAC in the current study. Earlier studies documenting lower rates of anticoagulation enrolled patients in the 1990s, shortly after publication of trials supporting its efficacy\(^1\)\(^7\),\(^1\)\(^8\) and before widespread adoption of anticoagulation into clinical practice.\(^1\)\(^3\)–\(^1\)\(^5\) Many of these studies focused on underserved populations, including Medicaid beneficiaries, who may receive less medical care.\(^1\)\(^5\) In contrast, few members of the ORBIT-AF cohort come from traditionally underserved populations. Those studies investigating patients in health maintenance organizations or other managed care settings documented rates of anticoagulation closer to those in the ORBIT-AF cohort.

Table 2. Rates of Anticoagulation According to Stroke and Bleeding Risk

<table>
<thead>
<tr>
<th>ATRIA Score</th>
<th>CHADS(_2) Score, n/N (%)</th>
<th>CHADS(_2) Score, n/N (%)</th>
<th>Total, n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (0–3)</td>
<td>1633/2458 (66.4)</td>
<td>4011/4884 (82.1)</td>
<td>5644/7342 (76.9)</td>
</tr>
<tr>
<td>High (≥4)</td>
<td>261/409 (63.8)</td>
<td>1656/2202 (75.2)</td>
<td>1917/2611 (73.4)</td>
</tr>
<tr>
<td>Total</td>
<td>1894/2867 (66.1)</td>
<td>5667/7086 (80.0)</td>
<td>7561/9953 (76.0)</td>
</tr>
</tbody>
</table>

ATRIA indicates anticoagulation and risk factors in atrial fibrillation; and CHADS\(_2\), congestive heart failure, hypertension, age, diabetes mellitus, prior stroke.

\(^*\)P value=0.021 for the interaction between CHADS\(_2\) and ATRIA scores.

\(†\)This calculation excludes 4 subjects without ATRIA or CHADS\(_2\) scores.

Figure 1. Rates of oral anticoagulation (OAC) according to congestive heart failure, hypertension, age, diabetes mellitus, prior stroke (CHADS\(_2\)), and anticoagulation and risk factors in atrial fibrillation (ATRIA) scores. The table below the chart represents the total number of subjects in each group. CHADS\(_2\) score was missing on 1 patient, and ATRIA score was missing on 4 patients. OAC defined as warfarin or dabigatran use at time of study enrollment.
For example, 73% of all patients received warfarin or aspirin in a population-based study of patients with newly detected AF in a large health plan. It is also possible that OAC use has improved as a result of quality control measures and publication of American College of Cardiology/American Heart Association performance measures for AF. More recent studies focusing on outpatients with AF have documented higher rates of anticoagulation. For example, a study from the AFFECTS (Atrial Fibrillation: Focus on Effective Clinical Treatment Strategies) Registry, enrolling patients from 2005 to 2007, documented that 64% of eligible patients received warfarin and 83% received warfarin or aspirin.

ORBIT-AF enrolled patients from anticoagulation, cardiology, and electrophysiology clinics. Previous studies have shown lower rates of OAC among patients who do not see cardiologists. It is possible that sites voluntarily participating in ORBIT-AF may reflect providers at those sites who are more aware of guideline recommendations and quality measures. Therefore, some degree of selection bias could explain the higher rates of OAC observed in this study.

Figure 2. Rate of oral anticoagulation (OAC) according to congestive heart failure, hypertension, age, diabetes mellitus, prior stroke (CHADS2) stroke score (A) and anticoagulation and risk factors in atrial fibrillation bleeding score (B). *P values <0.001 for the relationship of CHADS2 and ATRIA scores, respectively, to rates of OAC. OAC defined as warfarin or dabigatran use at time of study enrollment.
Anticoagulation in Low-Risk Patients

The higher relative rates of OAC in our study persisted among patients at low risk for stroke. Our study found that 52.5% of patients with a CHADS2 score of 0 received OAC. These rates of OAC are higher than previously reported in some groups of patients at this stroke risk level.20,22 Other reports, however, have documented rates of OAC exceeding 50% in stable outpatients with AF and a CHADS2 score of 0,24,25 In our subjects with CHADS2 scores of 0, rates of OAC increased with additional stroke risk factors (Table 3). This finding suggests that clinicians caring for these patients were incorporating the CHA2DS2-VASc score or other risk prediction models into their clinical decision making, thus lowering the threshold at which patients qualify for OAC.6 It is also possible that these patients may have been anticoagulated for conditions other than AF, such as valvular heart disease or venous thromboembolic events. However, it is unlikely that these conditions alone would account for the relatively high OAC rates. Finally, clinicians may be anticoagulating these patients simply because they have AF, regardless of their low rate of thrombotic events.26 Regardless, these high rates of OAC in patients at low risk for stroke in this study and other reports24,25 raise the question about the potential for inappropriate anticoagulation in some patients with AF. Future studies are necessary to determine the specific reasons for these trends.

Association of OAC With Stroke and Bleeding Risk

Our data suggest that the overall decision to anticoagulate patients remains driven predominantly by stroke rather than bleeding risk in the population under study. The increase in OAC moving from low to high stroke risk seems greater than the decrease in OAC moving from low to high bleeding risk.

Table 3. Prevalence of Additional Stroke Risk Factors and Rates of Anticoagulation Among Subjects With CHADS2 Score of 0

<table>
<thead>
<tr>
<th>Number of Additional Risk Factors*</th>
<th>N (%) of Subjects With CHADS2 Score of 0†</th>
<th>N (%) of Subjects on OAC‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>230 (35.1)</td>
<td>103 (44.8)</td>
</tr>
<tr>
<td>1+</td>
<td>425 (64.9)</td>
<td>241 (56.7)</td>
</tr>
</tbody>
</table>

ATRIA indicates anticoagulation and risk factors in atrial fibrillation; CHA2DS2-VASc, congestive heart failure or left ventricular systolic dysfunction, hypertension, age, diabetes mellitus, prior stroke, vascular disease, and sex; and OAC, oral anticoagulation, defined as warfarin or dabigatran use at time of study enrollment.

For example, rates of OAC decreased from 76.9% to 73.4% among all subjects with low versus high ATRIA scores, for a marginal difference of 3.5% (Table 2). In contrast, rates of OAC increased from 66.1% to 80.0% among all subjects with low versus high CHADS2 scores, for a marginal difference of 21.9% (Table 2). Our sensitivity analysis excluding those with contraindications to OAC demonstrated similar marginal differences (Table 4). Furthermore, the test for interaction demonstrated that rates of OAC increase more moving from low to high CHADS2 scores among patients with low bleeding risk than they do in patients with high bleeding risk (Table 2). The large difference in magnitude of effect and significant interaction between stroke and bleeding risk demonstrates that stroke risk drives decisions on OAC more than bleeding risk in the ORBIT-AF population of stable outpatients with AF.

Despite the importance of stroke risk, bleeding risk still influenced OAC decisions. In the primary analysis, bleeding risk impacted OAC use the most in patients with high stroke risk. In patients with a CHADS2 score ≤1, rates of OAC were 66.4% in those with low versus 63.8% in those with high ATRIA scores. In contrast, among those with a CHADS2 score ≥2, rates of OAC dropped from 82.1% in those with low ATRIA scores to 75.2% in those with higher ATRIA scores (Table 2).

It is possible that investigators rationalized a decision not to treat patients with OAC by justifying high bleeding risk as a contraindication to OAC regardless of the potential net benefit of OAC. This underscores the phenomenon that those who benefit the most from OAC are still less likely to receive OAC if their bleeding risk is high. Although withholding OAC in those at high risk for bleeding may seem intuitive, several potential downsides exist to such an approach. First, stroke risk and bleeding risk are highly correlated. Patients at high risk of bleeding are often at the highest risk of stroke. Furthermore, a clear positive correlation exists between stroke risk and the absolute benefit derived from OAC.27,28 Although it would seem logical to withhold OAC from patients with AF at high bleeding risk, current data suggest that most patients with high bleeding or stroke scores derive clinical benefit from OAC through reduced stroke risk.29-32 No prospective studies have ever tested whether withholding OAC in those at high risk of bleeding results in net clinical benefit. Future prospective studies are necessary to determine if a combined bleeding and stroke-score–guided approach to OAC results in improved survival. Future work must also assess the degree to which bleeding risk should impact decisions on OAC. Despite
the limited data available, data from this study suggest that clinicians caring for stable outpatients with AF are withholding OAC from the patients at highest stroke and bleeding risk without prospective data demonstrating a benefit from that approach.

Differences Between Inpatient and Outpatient Populations

Recent studies have clearly documented a negative correlation between stroke risk and provision of OAC. This phenomenon has been observed most prominently in acutely ill inpatients. This study, in contrast, describes a positive correlation between stroke scores and provision of OAC in a large cohort of community outpatients. It is possible that the findings documented in the studies of inpatients occurred because clinicians withheld OAC in the context of concurrent acute illnesses or use of other antithrombotic medications, such as aspirin or clopidogrel. Other data would suggest that the risk-treatment paradox in these studies may be isolated to the inpatient setting. For instance, studies of outpatients have documented a positive correlation between rates of OAC and stroke risk. These findings imply a need for prospective studies to assess uptake of OAC among acutely ill inpatients as they transfer to stable outpatient care.

Limitations

Several limitations exist in this analysis. Participation in ORBIT-AF was voluntary, and it is possible that subject enrollment or site participation in ORBIT-AF could alter local clinical practice. The patient population in this study was also a largely white and male population, suggesting that the data may be less applicable to minority or female populations. Selection bias may also have influenced the results, as it is possible that including patients from specialty clinics, such as electrophysiology or thrombophilia practices, may have led to higher rates of OAC than observed in primary care settings. We did not include other available methods of calculating bleeding risk in our analysis. In particular, we did not use the hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly, drugs/ alcohol concomitantly score because we do not have baseline data on international normalized ratio lability, one of the hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly, drugs/ alcohol concomitantly (ie, HAS-BLED) score components, on patients in ORBIT-AF. Finally, this study did not assess the impact of stroke and bleeding risk on provision of newer anticoagulants. Although overall rates of OAC remain unchanged, despite rising use of dabigatran, it is possible that provision of OAC may increase as rivaroxaban and apixaban permeate clinical practice.

Conclusions

In this analysis of outpatients with AF, we found that rates of OAC exceed those reported in previous studies, perhaps reflecting wider adoption of stroke prophylaxis guidelines in contemporary community practice. In contrast to prior studies, we found that use of OAC rose appropriately with increasing stroke risk, as defined by the CHADS2 score. This rise in the use of OAC occurred in patients at both high and low bleeding risks. However, in the highest risk patients, rates of OAC were driven predominantly by stroke risk.

Despite these improvements, quality initiatives remain necessary to improve overall stroke prevention treatment in patients with AF. Prospective studies must test the benefit of a combined bleeding and stroke score approach to anticoagulation.

Acknowledgments

Drs Cullen, Piccini, Kim, Peterson, and Gersh had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Sources of Funding

This study received financial support from Johnson & Johnson Pharmaceuticals.

Disclosures

The authors report the following conflicts of interest and financial disclosures on this article. Dr Piccini receives research funding from Johnson & Johnson and Boston Scientific. He participates on scientific and advisory boards for Janssen Pharmaceuticals and provides consulting to Forest Laboratories, Medtronic, and Titan Pharmaceuticals. Dr Ansell is a consultant for Bristol-Myers Squibb, Pfizer, Boehringer Ingelheim, Janssen, and Daiichi. He serves on the Data Safety Monitoring Board of Bristol-Myers Squibb. Dr Fonarow receives consultant fees/honoraria from Takeda, Amgen, Johnson & Johnson, Medtronic, Novartis, and Gambro. He receives research grants from the National Institutes of Health/National Institute of Allergy and Infectious Diseases, Novartis, and the National Heart, Lung, and Blood Institute. Dr Hylek has served as an advisor to Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Johnson & Johnson, and Pfizer. She has participated in clinical symposia sponsored by Bayer, Boehringer Ingelheim, and Bristol-Myers Squibb. Dr Singer has consulted for Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Johnson & Johnson, Merck, Bayer Healthcare, Pfizer, and Sanofi-Aventis. He has received research support from Daiichi Sankyo. Dr Mahaffey has received consulting fees from Adolor, Alexion, Amgen, Argolyn Bioscience, AstraZeneca, Bayer, Bristol-Myers Squibb, Daiichi Sankyo, Eli Lilly, Elsevier, Forest Labs, Genentech, GlaxoSmithKline, Guidant, Ikarja, Johnson & Johnson, Merck, Novartis, Pfizer, Proctor & Gamble, Sanofi Aventis, Schering Plough, SciOs, and WebMD. He has received grant support from Abbott Vascular, Amgen, Amylin, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, CardioKinetics, Cordis, Edwards LifeSciences, Eli Lilly, Genentech, GlaxoSmithKline, Guidant, Innocell Pharmaceuticals, Johnson & Johnson, KCI Medical, Luitpold Pharmaceutical, Medtronic, Merck, Momenta Pharmaceuticals, Novartis, Portola Pharmaceutical, Pozen, Regado Biotechnologies, Sanofi Aventis, Schering Plough, and the Medicines Company. He has received lecture fees from Johnson & Johnson. Dr Kowey has served as an advisor or consultant for Sanofi Aventis, Merck, Boehringer Ingelheim Pharmaceuticals, AstraZeneca Pharmaceuticals, and Johnson & Johnson Pharmaceutical Research. He has served as a speaker or a member of a speaker’s bureau for Sanofi Aventis, Boehringer Ingelheim Pharmaceuticals, and GlaxoSmithKline. He owns stock, stock options, or bonds from CardioNet. Dr Go has received research support from Johnson & Johnson. Dr Lopes has received research grants from Bristol-Meyers Squibb. He has served as an advisor or consultant for Boehringer Ingelheim Pharmaceuticals, Bristol-Myers Squibb, and Pfizer. Dr Chang is employed by Johnson & Johnson. Dr Peterson has received research grants from Bristol-Meyers Squibb, Eli Lilly, Johnson & Johnson Pharmaceutical Research & Development, and Sanofi-Aventis. The other authors report no conflicts.
References

Risks and Benefits of Anticoagulation in Atrial Fibrillation: Insights From the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) Registry

Circ Cardiovasc Qual Outcomes. 2013;6:461-469; originally published online June 11, 2013; doi: 10.1161/CIRCOUTCOMES.113.000127

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/6/4/461

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/