Effectiveness of a Clinical Decision Support System for Reducing the Risk of QT Interval Prolongation in Hospitalized Patients

James E. Tisdale, PharmD; Heather A. Jaynes, MSN; Joanna R. Kingery, PharmD; Brian R. Overholser, PharmD; Noha A. Mourad, MS; Tate N. Trujillo, PharmD; Richard J. Kovacs, MD

Background—We evaluated the effectiveness of a computer clinical decision support system (CDSS) for reducing the risk of QT interval prolongation in hospitalized patients.

Methods and Results—We evaluated 2400 patients admitted to cardiac care units at an urban academic medical center. A CDSS incorporating a validated risk score for QT interval prolongation was developed and implemented using information extracted from patients’ electronic medical records. When a drug associated with torsades de pointes was prescribed to a patient at moderate or high risk for QT interval prolongation, a computer alert appeared on the screen to the pharmacist entering the order, who could then consult the prescriber on alternative therapies and implement more intensive monitoring. QT interval prolongation was defined as QT interval >500 ms or increase in QT of ≥60 ms from baseline; for patients who presented with QT >500 ms, QT prolongation was defined solely as increase in QT ≥60 ms from baseline. End points were assessed before (n=1200) and after (n=1200) implementation of the CDSS. CDSS implementation was independently associated with a reduced risk of QT prolongation (adjusted odds ratio, 0.65; 95% confidence interval, 0.56–0.89; P<0.0001). Furthermore, CDSS implementation reduced the prescribing of noncardiac medications known to cause torsades de pointes, including fluoroquinolones and intravenous haloperidol (adjusted odds ratio, 0.79; 95% confidence interval, 0.63–0.91; P=0.03).

Conclusions—A computer CDSS incorporating a validated risk score for QT prolongation influences the prescribing of QT-prolonging drugs and reduces the risk of QT interval prolongation in hospitalized patients with torsades de pointes risk factors. (Circ Cardiovasc Qual Outcomes. 2014;7:381-390.)

Key Words: electrocardiography ■ medical decision making, computer-assisted ■ risk score ■ torsades de pointes
WHAT IS KNOWN

• QT interval prolongation is a risk factor for torsades de points, a life-threatening arrhythmia.
• Reliable, effective strategies to mitigate the risk of drug-induced QT interval prolongation and torsades de points have not been developed.

WHAT THE STUDY ADDS

• A computer decision support system was developed, incorporating a validated risk score for QT interval prolongation.
• This clinical decision support system alerted pharmacists entering orders for drugs that could provoke QT interval prolongation among specific patients at moderate or high risk of developing QT interval prolongation; the pharmacists then contacted prescribers to discuss risk mitigation strategies.
• Implementation of the computer clinical decision support system resulted in a significant reduction in the prescribing of noncardiac QT interval–prolonging medications and the risk of QT interval prolongation in patients hospitalized in cardiac care units.

including warfarin, heparin, aminoglycosides, and others. Limited data suggest that implementation of specific CDSS may improve some patient outcomes. A primary limitation of many CDSS is alert desensitization, or alert fatigue, where clinicians frequently override alerts because of alert nonspecificity and the perception that the alert appears for all patients receiving specific drugs, rather than for patients truly at risk for the adverse drug reaction or drug interaction of interest. Incorporation of risk quantification into a CDSS, such that the appearance of the alert indicates that a patient is at increased risk of experiencing a specific adverse effect, may potentially minimize routine alert overrides and maximize CDSS use and effectiveness.

We tested the hypothesis that implementation of a computer CDSS incorporating a validated risk assessment for QT interval prolongation reduces the prescribing of medications known to cause drug-induced TdP and decreases the associated risk of QT interval prolongation in hospitalized patients with known TdP risk factors.

Methods

Study Setting

This study was conducted in the cardiac care units (CCU) at Indiana University Health Methodist Hospital, a 747-bed university-affiliated tertiary care teaching institution located in Indianapolis. The CCU consists of one 28-bed cardiac critical care unit and one 28-bed cardiac progressive care unit, which primarily admit patients with cardiac diseases alone or with other medical problems. Typical diagnoses include acute myocardial infarction, heart failure, cardiac arrest, kidney disease, respiratory failure, and sepsis. A variety of physician staff attend these units, including cardiologists, heart failure specialists, critical care physicians and hospitalists. The study was approved by the Institutional Review Board at Indiana University Purdue University Indianapolis. The requirement for informed consent was waived.

Study Design

The design of this prospective, observational study is presented in Figure 1. The study consisted of 3 phases: (1) preintervention, during which the incidence of the primary and secondary end points were assessed before activation of the CDSS, (2) development of the CDSS, implementation into the institution’s computer system, functionality testing, modification and optimization of functionality, and healthcare provider education on CDSS function, and (3) activation of the computerized CDSS and subsequent assessment of primary and secondary study end points.

Phase 1: Preintervention Phase

Before implementation and activation of the computerized CDSS, data were collected from 1200 patients admitted to the CCU from October 2008 to October 2009. Exclusion criteria included <18 years of age, discharge from the unit in <24 hours, and those who were not undergoing daily ECGs or continuous cardiac rhythm monitoring. Patients with completely paced ventricular rhythms were excluded because of the difficulty in accurately measuring duration of ventricular repolarization with a paced QRS complex, and the lack of normative data on JT intervals as an alternative to the QT interval in paced rhythms. Patients were enrolled at the time of admission, and data were collected at admission and daily during hospitalization.

Data collected from computer and paper medical records included demographics, admitting diagnosis, current medical problems, past medical history, past and current medications, daily progress notes, and laboratory tests. All medications during hospitalization were recorded. Drugs were considered to be QT interval prolonging if evidence for causing QT interval prolongation and TdP was available from published trials or case reports. Table 1 lists the drugs on the Indiana University Health Methodist Hospital formulary that were considered to be QT interval–prolonging drugs. Laboratory data were collected on admission and daily. Serum magnesium concentrations were available for some, but not all patients. Creatinine clearances were calculated from using the Cockcroft–Gault equation. Serum potassium, magnesium, calcium, and creatinine concentration values are those at the time that QT interval prolongation was initially documented. For patients who did not develop QT interval prolongation, these values are the lowest (potassium, magnesium, and calcium, or highest [creatinine clearance] reported during the patient’s hospitalization.

A baseline 12-lead ECG was obtained within 4 hours of admission in 867 (72.3%) patients. All patients underwent continuous cardiac telemetry monitoring. Daily QT intervals were measured by an investigator (H.J.; ≥90% of ECGs) or technician (≤10% of ECGs) from lead II of 12-lead ECGs or from continuous lead II telemetry strips using computer-enhanced magnification and electronic calipers when possible (MUSE Cardiology Information System, GE Healthcare, Waukesha, WI). Inter-rater reliability was determined by comparing measurements on ≥5% of the ECGs (x±0.90). QT intervals were measured from beginning of the earliest onset of the QRS complex to the end of the T wave, determined by extending a tangent from steepest portion of the downslope of the T wave until it crossed the T-P segment. During normal sinus rhythm, QT and R–R intervals were averaged from 3 consecutive complexes. During other rhythms, QT and R–R intervals were averaged over all complexes on the 6-second rhythm strips or 10-second lead II rhythm strip on the 12-lead ECGs. QT intervals were corrected for heart rate using Bazett’s formula (QTc).

QT interval prolongation was defined as QTc interval ≥500 ms or an increase in QTc interval of ≥60 ms compared with the admitting value at any time during hospitalization; for patients who presented with QTc >500 ms, QT interval prolongation was defined solely as increase in QTc, ≥60 ms from admitting value. As secondary analyses, the following alternate definitions of QTc prolongation were used: (1) QTc interval ≥500 ms or an increase in QTc interval of ≥30 ms compared with the admitting value (for patients who presented with QTc >500 ms, the definition was increase in QT interval of ≥30 ms from admitting value); (2) increase in QT, ≥260 ms from admitting value; and (3) increase in QT, ≥230 ms from admitting value.
Phase 2: Development of the CDSS, Functionality Testing, CDSS Modification, and Healthcare Provider Education

A computerized CDSS was developed that extracted information from electronic medical records of patients admitted to the CCU. The CDSS incorporated a validated risk score for QTc interval prolongation, and patient information extracted by the CDSS was based on known risk factors for QTc interval prolongation that are included in this risk score. Development and validation of the QTc prolongation risk score have been described previously. The QTc interval prolongation risk score is presented in Table 2. Serum magnesium concentrations are not included in the score because they were only obtained in 38% of patients admitted to the CCU. Patients were classified as being at low, moderate, or high risk of developing QTc interval prolongation during their hospitalization, based on risk scores of <7, 7 to 10, or ≥11, respectively.

The computerized CDSS was incorporated into the institution’s computer platform (Cerner Corporation, North Kansas City, MO). Queries were designed and refined to extract information necessary to calculate the QTc interval prolongation risk score. When a patient was admitted to the CCU, the computerized CDSS immediately extracted patient information from the medical record to calculate the score. Age and sex were extracted from demographics data. Serum potassium concentration closest to the time of order entry was used; point of care testing results were excluded. Other information extracted to calculate the risk score included diagnoses of acute myocardial infarction, heart failure with reduced ejection fraction; therapy with loop or thiazide diuretics; and QTc interval–prolonging drugs. Medications were documented from the active medication list within 48 hours of order entry. The QTc interval closest to the time of order entry from a 12-lead ECG loaded into the computer system was used to calculate the risk score. The computerized CDSS then calculated a QTc interval prolongation risk score for each patient admitted to the CCU. However, the CDSS was not displayed on the computer screen unless the following conditions were met: (1) an order was written for a QTc interval–prolonging drug; (2) the patient’s QTc interval prolongation risk score classified the patient as moderate risk (risk score, 7–10; corresponding to a 34%–50% risk) or high risk (risk score, ≥11; corresponding to a >50% risk) of developing QTc prolongation during the hospitalization; or (3) the patient’s admitting QTc interval was >500 ms. The list of QTc interval–prolonging drugs on the hospital’s formulary that was programmed into the computer to trigger the CDSS is presented in Table 1. The computerized CDSS was programmed into the institution’s computer system and was tested for functionality from October 2009 to March 2011, during which the computer alerts did not appear to clinicians, but ran in the background for CDSS testing and optimization.

Before activation of the computerized CDSS, pharmacy and physician staff were educated about the alert system. Pharmacy staff received 2 educational modules. The first was a web-based program reviewing the clinical problem of QTc interval prolongation and TdP. The second was an in-person training session provided by pharmacists who acted as resources for the staff who reviewed functionality of the computerized CDSS and allowed the pharmacists time to practice with the CDSS. Physician staff underwent education during monthly meetings and received a brief email message describing the CDSS alert and the pharmacist’s role in the alert process. In addition, a cardiologist (R.K.) acted as resource and was available to physician staff to answer questions. Education was repeated as part of the orientation process for both pharmacists and physicians new to the hospital. The education process emphasized the fact that the appearance of the computer alert was based on validated risk assessment. Unlike many other computerized CDSS programs, particularly for drug interactions, these alerts did not appear for every patient for whom a QTc interval–prolonging drug was prescribed, but only for those patients for whom there was a moderate (34%–50% risk) to high (>50%) risk of developing QTc interval prolongation based on the calculated QTc interval prolongation risk score. The computerized CDSS did not
The computerized CDSS was activated in March 2011. The alert revealed the patient’s QTc prolongation risk score, categorized the patient’s risk as moderate or high, and indicated the specific risk factors that were contributing to the score. As computer physician order entry was not available at Indiana University Health Methodist Hospital at the time this study was conducted, the alert was directed to the pharmacists entering medication orders into the computer system. When an order for a QTc interval–prolonging medication was received by the hospital pharmacy, it was entered into the computer by a pharmacist. If the patient had a calculated QTc interval prolongation risk score in the moderate or high range, the computer alert appeared on the screen to the pharmacist entering the order. When the alert appeared, the pharmacist had the following options: overriding the alert and taking no further action; contacting the prescribing physician, alerting him/her to the fact that the patient was at moderate or high risk, discussing risk mitigation strategies such as correction of serum electrolytes, where necessary, and performing more frequent measurement of QTc intervals; and where appropriate, discussing with the prescriber whether the QTc interval–prolonging drug could be discontinued and replaced with therapy with an alternate agent with less or no potential to cause QTc interval prolongation. The prescriber could also recommend that the alert be overridden, with no further action taken.

Table 2. Calculation of Risk Score for QTc Interval Prolongation

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥68 y</td>
<td>1</td>
</tr>
<tr>
<td>Female sex</td>
<td>1</td>
</tr>
<tr>
<td>Loop diuretic</td>
<td>1</td>
</tr>
<tr>
<td>Serum K+ ≤3.5 mEq/L</td>
<td>2</td>
</tr>
<tr>
<td>Admission QTc ≥450 ms</td>
<td>2</td>
</tr>
<tr>
<td>Acute MI</td>
<td>2</td>
</tr>
<tr>
<td>1 QTc interval–prolonging drug</td>
<td>3</td>
</tr>
<tr>
<td>≥2 QTc interval–prolonging drugs</td>
<td>3</td>
</tr>
<tr>
<td>Sepsis</td>
<td>3</td>
</tr>
<tr>
<td>Heart failure</td>
<td>3</td>
</tr>
<tr>
<td>Maximum risk score</td>
<td>21</td>
</tr>
</tbody>
</table>

K+ indicates potassium; and MI, myocardial infarction.
consecutively admitted to the CCU. The same exclusion criteria applied to the implementation group as to the preimplementation group. Data collected from computer and paper medical records were the same as those listed under preintervention phase. All patients underwent continuous cardiac telemetry monitoring and a baseline 12-lead ECG was obtained within 4 hours of admission. QTc intervals were measured and corrected as described in the preintervention phase.

Study End Points
Primary and secondary end points after implementation of the computerized CDSS were compared with those in the preintervention phase. Primary end points were (1) odds ratio (OR) for developing QTc interval prolongation, defined as a QTc interval ≥500 ms or an increase from admitting value of ≥60 ms at any time during the CCU hospitalization; for patients who presented with QTc ≥500 ms, the definition was increase in QTc interval from admitting value of ≥60 ms at any time during the CCU hospitalization; for patients who presented with QTc >500 ms, the definition was increase in QTc interval from admitting value of ≥60 ms at any time during the CCU hospitalization; (2) OR for receiving therapy with a QTc interval–prolonging medication from any drug class; and (3) OR for receiving therapy with a noncardiac QTc interval–prolonging medication.

Secondary end points included (1) OR for developing QTc interval prolongation using alternate definitions of QTc interval prolongation: (a) QTc interval ≥500 ms or an increase in QTc interval of ≥30 ms compared with admitting value at any time during hospitalization (for patients who presented with QTc >500 ms, the definition was increase in QTc of ≥30 ms from admitting value), (b) increase in QTc interval of ≥60 ms from admitting value,16 and (c) increase in QTc interval of ≥30 ms from admitting value; the proportion of patients who presented with pre-existing QTc interval prolongation (defined as admitting QTc interval ≥500 ms) who subsequently received therapy with a QTc interval–prolonging medication during the CCU hospitalization; (3) proportion of patients who had QTc interval prolongation directly associated with a QTc interval–prolonging medication; (4) proportion of patients with their highest documented QTc interval prolongation risk score of moderate versus high; (5) proportion of patients who experienced ≥1 episode of nonsustained monomorphic ventricular tachycardia (defined as ≥3 beats, but <30 seconds); and (6) proportion of computer CDSS alerts that were overridden.

Statistical Analysis
Unpaired Student t tests were used to compare continuous variables, assuming equal or unequal variances between the groups, and χ2 or Fisher exact test, as appropriate, was used for categorical variables. Non-normally distributed continuous parameters were compared using the Wilcoxon rank-sum test. To calculate adjusted odds of QTc interval prolongation, independent predictors of QTc prolongation were determined. Univariate variables with P value ≤0.10 were incorporated into a bivariate logistic regression model in a forward stepwise fashion in descending order of those most strongly associated with QTc prolongation based on univariate P value. Significant continuous variables were dichotomized based on the results of the univariate analysis. Dichotomized variables were compared using the χ2 or Fisher exact test as appropriate. ORs with 95% confidence intervals (CIs) were determined for each variable. Analyses were performed using SPSS 17.0 (SPSS, Inc, Chicago, IL).

Results
Patient Characteristics
Characteristics of patients in both study phases are presented in Table 3. The CDSS implementation group had a significantly lower proportion of women, white, and patients >67 years and a significantly higher proportion of patients with heart failure with reduced ejection fraction.

Primary End Points
Implementation of the CDSS resulted in a significant reduction in the adjusted OR of QTc interval prolongation in patients in the CCU (OR, 0.65; 95% CI, 0.56–0.89; Figure 2). Implementation of the CDSS did not result in a significant reduction in the adjusted OR of prescribing any QTc interval–prolonging drug (OR, 0.87; 95% CI, 0.77–1.12; Figure 2). However, implementation of the CDSS led to a significant reduction in the adjusted OR of prescribing noncardiac QTc interval–prolonging drugs (OR, 0.79; 95% CI, 0.63–0.91; Figure 2), primarily fluoroquinolone antibiotics and intravenous haloperidol.

Independent risk factors for developing QTc interval prolongation are presented in Figure 3. The odds of developing QTc prolongation were increased by known risk factors for QTc interval lengthening, including female sex, respiratory distress, diabetes mellitus, acute myocardial infarction, any arrhythmia, and receiving a loop diuretic or ≥1 QTc interval–prolonging medication. Implementation of the CDSS was independently associated with a significant reduction in the odds of developing QTc interval prolongation.

Secondary End Points
Using the definition QTc interval ≥500 ms or increase in QTc interval of ≥30 ms compared with the admitting value during hospitalization (for patients who presented with QTc >500 ms, defined as increase in QTc of ≥30 ms from admitting value), implementation of the CDSS significantly reduced the adjusted OR of QTc interval prolongation (OR, 0.78; 95% CI, 0.63–0.97). Using the definition increase in QTc interval of ≥60 ms from admitting value, implementation of the CDSS did not reduce the odds of QTc interval prolongation (OR, 0.98; 95% CI, 0.87–1.39). Using the definition increase in QTc interval of ≥30 ms from admitting value, implementation of the CDSS did not reduce the odds of QTc interval prolongation (OR, 0.93; 95% CI, 0.79–1.33).

The proportion of patients who presented with pre-existing QTc interval prolongation who subsequently received a QTc interval–prolonging drug during the CCU hospitalization was reduced after implementation of the CDSS compared with the preintervention phase (57/163 [35%] versus 64/97 [66%]; P=0.0001). The proportion of patients who developed QTc interval prolongation directly associated with a medication was lower after implementation of the computerized CDSS than in the preintervention phase (116/1200 [9.7%] versus 203/1200 [16.9%]; P<0.001). The incidence of nonsustained monomorphic ventricular tachycardia was not significantly different in the preintervention phase than after implementation of the CDSS (3.8% versus 3.3%; P=0.29). No patients developed TdP in either study phase.

The proportion of patients with a high QTc interval prolongation risk score was lower after implementation of the CDSS compared with preintervention (4.4% versus 10.3%; P<0.0001). In contrast, the proportion of patients with a moderate QTc interval risk score was higher after implementation of the CDSS (41.1% versus 35.5%; P=0.003). There was no difference in the proportion of patients with a low QTc interval risk score after CDSS implementation compared with preintervention (54.5% versus 54.2%; P=0.87).
After CDSS implementation, there were 470 alert triggers. Of these, 382 (82%) were overridden: 59% of these were overridden by physician request, and 41% were overridden by pharmacists (Table 4). Of the 470 alert triggers, 51 (13%) resulted in additional monitoring including ECGs or more frequent laboratory monitoring or treatment of modifiable risk factors such as discontinuing other QT-prolonging medications and replacing electrolytes. The most common
medication for which alerts were overridden was amiodarone (n=136).

The 470 alert triggers resulted in discontinuation of 84 (17.9%) medication orders. The most common drugs that were discontinued were intravenous haloperidol (n=23) and ciprofloxacin (n=18).

Discussion

A computer CDSS incorporating a validated QTc prolongation risk score reduced the odds of QTc interval prolongation and the prescribing of noncardiac QTc interval–prolonging drugs in patients in a CCU. Implementation of the computer CDSS also reduced the prescribing of QTc interval–prolonging drugs to patients admitted to the CCU with pre-existing QTc interval prolongation.

QTc interval prolongation occurs commonly in patients in cardiac units.9 Furthermore, patients in cardiac units with pre-existing QTc interval prolongation are routinely prescribed QTc interval–prolonging drugs.9 Although risk factors for QTc prolongation and TdP are well documented,1,3 methods of identifying hospitalized patients at greatest susceptibility for developing QTc interval prolongation have not been described previously. The odds for QT interval prolongation increase as the number of risk factors increases. Each 10-ms increase in QTc interval contributes to a ≈5% to 7% increase in risk for TdP.4 QT interval prolongation increases the odds of in-hospital mortality10 and is an independent risk factor for

Figure 2. Influence of a computerized clinical decision support system on the adjusted odds of developing QTc prolongation, the adjusted odds of prescribing of QTc interval–prolonging drugs from any drug class, and the adjusted odds of prescribing noncardiac QTc interval–prolonging drugs.

Figure 3. Independent risk factors for developing QTc prolongation during hospitalization in cardiac critical care units. MI indicates myocardial infarction.
A definition of QTc interval prolongation of >500 ms or an QTc interval–prolonging medications. Therefore, although the influence and reducing the prescribing of noncardiac medication. Encouraging amelioration of modifiable risk factors, as well as implementation of this QT interval alert system may increase clinicians’ awareness of QT interval prolongation. It has been reported that the QT interval is prolonged in patients with drug-induced TdP. The American Heart Association/American College of Cardiology Foundation encourages QTc interval–monitoring strategies to minimize the likelihood of drug-induced TdP. The Mayo Clinic alert notifies clinicians that a patient’s QTc interval exceeds 500 ms, our alert notifies clinicians when a patient is at moderate to high risk for developing QTc interval prolongation. However, few strategies have been described to identify patients at greatest risk so that proactive steps may be taken to reduce the risk of progressing to QTc interval prolongation.

At the Mayo Clinic, Haugaa et al developed and implemented an institution-wide computer-based QT interval alert system, which screens all ECGs performed and alerts clinicians when the QTc interval is ≥500 ms. These investigators also developed a pro-QTc interval score, which assigned 1 point to diagnoses and conditions associated with QTc interval prolongation. The study found that all-cause mortality was higher in patients with QTc interval ≥500 ms compared with those with QTc interval <500 ms (19% versus 5%; P<0.001). The pro-QTc score predicted all-cause mortality. The authors reported that this QT interval alert system may increase clinicians’ awareness of prolonged QTc interval as a high-risk indicator, and that reducing modifiable factors contributing to the pro-QTc score may facilitate life-saving interventions. Our work complements this work at the Mayo Clinic in several ways. First, we have developed and validated a QTc interval risk score that accurately predicts patients that are at moderate to high risk for developing QTc interval prolongation. Second, incorporation of that risk score into a computerized CDSS reduced the risk of QTc interval prolongation in patients in cardiac care units, in part, by encouraging amelioration of modifiable risk factors, as well as through influencing and reducing the prescribing of noncardiac QTc–prolonging medication. Therefore, although the Mayo Clinic alert notifies clinicians that a patient’s QTc interval exceeds 500 ms, our alert notifies clinicians when a patient is at moderate or high risk of developing QTc interval prolongation, so that steps can be taken to reduce the likelihood that QTc interval prolongation actually develops.

In the present study, we used as our primary end point a definition of QTc interval prolongation of >500 ms or an increase in QTc interval of ≥60 ms from admitting value). This end point was chosen based on data in patients with the long QT syndrome indicating that QTc interval >500 ms is associated with a 2- to 3-fold higher risk of TdP than QTc interval <500 ms, and also based on data in patients with drug-induced TdP, which show a similar increased risk when the QTc interval is >500 ms. However, as there is no universally accepted consensus on the definitions of QTc interval prolongation, we also analyzed our data using other definitions. Using the definition QTc interval >500 ms or an increase of ≥30 ms compared with admitting value (or for patients who presented with QTc >500 ms, an increase in QTc of ≥30 ms from admitting value), implementation of the CDSS significantly reduced the OR for QTc interval prolongation. A potential disadvantage of the above 2 definitions is that a patient could be admitted with a QTc interval between 490 and 500 ms, for example, and then during drug therapy experience a relatively small percentage increase from baseline to >500 ms and be counted in the QTc interval prolongation group. However, only 6% of patients in our study population presented with QTc interval 490 to 499 ms. We also analyzed the data using 2 definitions that did not include prolongation to >500 ms: an increase in QTc interval by ≥60 ms from admitting value and an increase in QTc interval by ≥30 ms from admitting value. Using these definitions, CDSS implementation did not result in reduction in the odds of QTc interval prolongation. However, it should be pointed out that the QTc interval prolongation risk score that was incorporated into the CDSS and which identified patients as being at low, moderate, or high risk was developed and validated using the QTc interval prolongation definition used for our primary end point. Therefore, the validity of our QTc interval risk score using an alternate definition of QTc interval prolongation is unknown. Further, as described above, data indicate that QTc interval >500 ms seems to be a critical threshold for an increased risk of TdP, rather than any specific increase in the interval from baseline. Using 2 definitions of QTc interval prolongation that included QTc interval >500 ms, our CDSS was effective for reducing the risk of QTc interval prolongation.

One of the primary limitations of many CDSS is alert fatigue, where clinicians frequently override alerts because of lack of specificity. Incorporation of risk assessment into a CDSS could minimize routine alert overrides and maximize CDSS use and effectiveness. In this study, our computer CDSS alert for QTc interval prolongation was specific and selective. Rather than appearing for every patient prescribed a QTc–prolonging drug, this alert was only displayed for patients prescribed a QTc–prolonging drug for whom there was a moderate to high risk of QTc interval prolongation based on assessment of QTc prolongation risk factors. Therefore, pharmacists who viewed an alert and physicians who were contacted about an alert knew that it was based on a validated quantification of risk. The CDSS alert override rate in this study was 82%, which is lower than override rates routinely reported in CDSS studies (often ≥90%). The lower alert override rate in this study may be a result of the more specific, selective nature of the CDSS alerts. Furthermore, overriding of an alert did not necessarily mean that no action was taken; in many cases, overriding of an alert meant that the QTc–prolonging medication that was ordered was not prescribed. Therefore, it is important to consider the specificity and effectiveness of CDSS alerts.

Table 4. Reasons for Computer Alert Overrides (n=382)

<table>
<thead>
<tr>
<th>Reason for Override</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician-notified; ordered to continue medication</td>
<td>225 (59)</td>
</tr>
<tr>
<td>Patient’s condition warrants drug administration</td>
<td>58 (15)</td>
</tr>
<tr>
<td>Therapy appropriate as ordered</td>
<td>48 (9)</td>
</tr>
<tr>
<td>Laboratory test to be repeated, continue treatment</td>
<td>20 (5)</td>
</tr>
<tr>
<td>Not applicable to formulation</td>
<td>6 (2)</td>
</tr>
<tr>
<td>Patient on dialysis, continue treatment as ordered</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Reference consulted, treatment appropriate</td>
<td>3 (1)</td>
</tr>
<tr>
<td>Treatment plan requirement</td>
<td>9 (2)</td>
</tr>
<tr>
<td>Other/unknown</td>
<td>11 (3)</td>
</tr>
</tbody>
</table>

Reasons for Computer Alert Overrides (n=382)

Downloaded from http://circoutcomes.ahajournals.org/ by guest on November 11, 2017
discontinued, but electrolyte supplementation was administered, another medication was discontinued, or more intensive QTc interval monitoring was performed.

In this study, implementation of the CDSS did not reduce the odds of prescribing of QTc interval–prolonging cardiovascular drugs, primarily amiodarone, but also including sotalol and other antiarrhythmic agents. Prolongation of ventricular repolarization is a major component of the efficacy of antiarrhythmic drugs. Furthermore, it is often difficult to replace a QTc interval–prolonging agent with a non–QTc interval–prolonging drug for arrhythmia management. Conversely, implementation of the CDSS significantly reduced the prescribing of noncardiac QTc-prolonging drugs, particularly fluoroquinolone antibiotics and intravenous haloperidol. This suggests that implementation of the CDSS enhanced prescriber awareness of the problem of QTc interval prolongation, such that prescribers, where possible and appropriate, selected non–QTc interval–prolonging medications for the management of noncardiac conditions.

There were no occurrences of TdP in the CCU in this study. Even in the highest risk populations, TdP occurs rarely; Swedish investigators estimated an incidence of 4 cases of TdP per 1 000 000 persons annually.24 In our patients with cardiac disease and TdP risk factors, the incidence of TdP may be somewhat higher. Larger numbers of patients monitored for longer periods of time would be needed to demonstrate a survival benefit for a risk mitigation strategy. Although TdP occurs relatively rarely, it is a potentially avoidable catastrophic event in hospitalized patients, and consequently the American Heart Association/American College of Cardiology Foundation strongly recommends increased awareness of QT interval prolongation, TdP risk, QT interval monitoring, and avoidance of QT interval–prolonging medications where possible in hospitalized patients.3 Reducing the risk of drug-induced QTc interval prolongation with CDSS or other measures may reduce the risk of drug-induced TdP and possibly all-cause in-hospital mortality; this hypothesis requires testing in further studies.

Limitations of this work include the fact that the study was conducted in 2 cardiac care units in a single tertiary care institution, which may limit the generalizability of the results; the findings may not apply to patients in general medical wards. However, although the patient population was limited to cardiovascular/critical care, there were a variety of noncardiologist physician specialties represented among the physicians attending patients in these units. Although patients completely paced ventricular rhythms were excluded, patients with QRS duration >120 ms were included because clinicians working with this CDSS must make decisions about patients who may develop QTc interval prolongation, including those presenting with QRS >120 ms. Therefore, we included those patients to maximize external clinical applicability of the findings. The study used a pre- and postinterventional design, which can introduce temporal bias. The CDSS development phase included an educational component that was not included in the preintervention phase; the influence of the educational component on the intervention is unclear and requires assessment in future studies. These findings should be confirmed in a prospective, randomized, parallel group study, in which the educational component is accounted for; the current study provides support for such a trial.

In conclusion, a computer CDSS incorporating a validated risk score for QTc interval prolongation influences the prescribing of noncardiac QTc-interval–prolonging drugs and reduces the risk of QTc interval prolongation in hospitalized patients with TdP risk factors. The results of this study provide support for a prospective, parallel group randomized study to evaluate the effectiveness of this or similar computer CDSS for reducing the risk of QTc interval prolongation and associated outcomes, including incidence of TdP and sudden cardiac death.

Acknowledgments
We wish to acknowledge Mark Baumgart, PharmD, and Jason Eder, PharmD, for their assistance and expertise in developing the computer clinical decision support system and integrating it into the computer system at Indiana University Health Methodist Hospital. In addition, we gratefully acknowledge Alex Ansara, PharmD, Phillip Blanks, PharmD, and Dustin Spencer, PharmD, for their participation in the education component of this study.

Sources of Funding
This work was supported by a grant from the Lilly Endowment, Inc, to the Purdue University College of Pharmacy, and by the National Institutes of Health (KO8 HL095655; Dr Overholser).

Disclosures
Dr Kovacs has served as an advisor to Eli Lilly & Co, Essentials, Xenoporo, Inc, and Synosia Therapeutics on issues related to the QT interval in drug development. The other authors report no disclosures.

References

Effectiveness of a Clinical Decision Support System for Reducing the Risk of QT Interval Prolongation in Hospitalized Patients

Circ Cardiovasc Qual Outcomes. 2014;7:381-390; originally published online May 6, 2014; doi: 10.1161/CIRCOUTCOMES.113.000651

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/7/3/381

An erratum has been published regarding this article. Please see the attached page for:
/content/7/6/981.full.pdf

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/
In the article by Tisdale et al, “Effectiveness of a Clinical Decision Support System for Reducing the Risk of QT Interval Prolongation in Hospitalized Patients,” which appeared in the May 2014 issue of the journal (Circ Cardiovasc Qual Outcomes. 2014;7:381–390), there is an error in Figure 3. The odds ratios, 95% confidence intervals, and P values for diabetes mellitus and respiratory distress are reversed. The figure has been corrected in the current version of the article online.

The authors regret the error.