Cross-Sectional Survey of Workload and Burnout Among Japanese Physicians Working in Stroke Care

The Nationwide Survey of Acute Stroke Care Capacity for Proper Designation of Comprehensive Stroke Center in Japan (J-ASPECT) Study

Kunihiro Nishimura, MD, MPH, PhD; Fumiaki Nakamura, MD, PhD; Misa Takegami, RN, PhD; Schunichi Fukuhara, MD, PhD; Jyooi Nakagawara, MD, PhD; Kuniaki Ogasawara, MD, PhD; Junichi Ono, MD, PhD; Yoshiaki Shiokawa, MD, PhD; Shigeru Miyachi, MD, PhD; Izumi Nagata, MD, PhD; Kazunori Toyoda, MD, PhD; Shinya Matsuda, MD, PhD; Hiroharu Kataoka, MD, PhD; Yoshihiro Miyamoto, MD, PhD; Kazuyo Kitaoka, RN, PhD; Akiko Kada, MPH; Koji Iihara, MD, PhD; J-ASPECT Study Group

Background—Burnout is common among physicians and affects the quality of care. We aimed to determine the prevalence of burnout among Japanese physicians working in stroke care and evaluate personal and professional characteristics associated with burnout.

Methods and Results—A cross-sectional design was used to develop and distribute a survey to 11211 physicians. Physician burnout was assessed using the Maslach Burnout Inventory General Survey. The predictors of burnout and the relationships among them were identified by multivariable logistic regression analysis. A total of 2724 (25.3%) physicians returned the surveys. After excluding those who were not working in stroke care or did not complete the survey appropriately, 2564 surveys were analyzed. Analysis of the participants’ scores revealed that 41.1% were burned out. Multivariable analysis indicated that number of hours worked per week is positively associated with burnout. Hours slept per night, day-offs per week, years of experience, as well as income, are inversely associated with burnout. Short Form 36 mental health subscale was also inversely associated with burnout.

Conclusions—The primary risk factors for burnout are heavy workload, short sleep duration, relatively little experience, and low mental quality of life. Prospective research is required to confirm these findings and develop programs for preventing burnout.

Key Words: neurosurgery ◼ stroke ◼ tissue plasminogen activator

Burnout is a syndrome characterized by emotional exhaustion and depersonalization, leading to decreased effectiveness at work. In a recent large survey of US physicians, 40% of neurosurgeons were found to have experienced symptoms of burnout. Another US study found that 40% of surgeons were burned out, conditions that are both associated with medical errors. However, limited research has been conducted into the relationship between specific demographic and practice characteristics and burnout among physicians working in stroke care, and no survey research has been conducted among Japanese physicians. Such lack of research is troubling because stroke is the fourth leading cause of death in Japan, as well as a leading cause of long-term disability.

The objective of this study was to determine the prevalence of burnout among Japanese neurosurgeons and neurologists working in stroke care and evaluate the personal and professional characteristics associated with burnout among this physician population.

Received February 25, 2013; accepted March 13, 2014.

From the Departments of Preventive Medicine and Epidemiology (K.N., M.T., Y.M.) and Department of Neurosurgery (H.K.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Public Health, School of Medicine, The University of Tokyo, Tokyo, Japan (F.N.); Department of Health Epidemiology, Graduate School of Medicine, Kyoto University, School of Public Health, Kyoto, Japan (S.F.); Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan (J.N.); Department of Neurosurgery, Iwate Medical University, Morioka, Japan (K.O.); Department of Neurosurgery, Chiba Cardiovascular Center, Ichihara, Japan (J.O.); Department of Neurosurgery, Kyorin University, Tokyo, Japan (Y.S.); Department of Neurosurgery, Nagoya University, Graduate School of Medicine, Nagoya, Japan (S. Miyachi); Nagasaki University School of Medicine, Nagasaki, Japan (I.N.); Department of Public Health, University of Occupational and Environmental Health, Kitakyushu, Japan (S. Matsuda); Department of Nursing, School of Nursing, Kanazawa University, Kanazawa, Japan (K.K.); Department of Clinical Research Promotion, National Hospital Organization Nagoya Medical Center, Nagoya, Japan (A.K.); and Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (K.I.).

The Data Supplement is available at http://circoutcomes.ahajournals.org/lookup/suppl/doi:10.1161/CIRCOUTCOMES.113.000159/-/DC1. Correspondence to Kunihiro Nishimura, MD, MPH, PhD, National Cerebral and Cardiovascular Center, 7-5-1 Fijishirodai, Suita, Osaka, Japan 565-8565. E-mail knishimu@res.ncvc.go.jp

© 2014 American Heart Association, Inc.

Circ Cardiovasc Qual Outcomes is available at http://circoutcomes.ahajournals.org
DOI: 10.1161/CIRCOUTCOMES.113.000159

414
WHAT IS KNOWN

• Approximately 40% of US neurosurgeons were found to have experienced symptoms of burnout.
• However, limited research has been conducted into the relationship between specific demographic and practice characteristics and burnout among physicians working in stroke care, and no survey research has been conducted among Japanese physicians.

WHAT THE STUDY ADDS

• A total of 2564 Japanese physicians working for stroke care was assessed for physician burnout using the Maslach Burnout Inventory General Survey.
• Among them, 41.1% were burned out, and the primary risk factors for burnout are heavy workload, short sleep duration, relatively little experience, and low mental quality of life. Working within a comprehensive stroke center resulted in a trend for less burnout.
• The cross-sectional nature of this study requires future confirmation to better establish causality and to test strategies to reduce burnout.

Methods

The original tasks for J-ASPECT study group expected by the government are as follows:

1. Examine the plausibility of establishing comprehensive stroke care center (CSC) in Japan and its effect.
2. Examine whether CSC can reduce the tendency of physicians to avoid practicing in rural areas because of long working hours and burnout.

We hypothesized that the centralization of stroke care physicians is one of possible solutions to stop the decreasing number of stroke care physicians in Japan, as recognized by many physicians, especially in rural area. Many physicians feel that it is really difficult to maintain the local healthcare systems for stroke care. However, there is no precise information about burnout prevalence in Japanese stroke care physicians.

Study Design

In March 2011, a cross-sectional survey was sent to 11211 physicians, among whom were all board-certified members of the Japanese Neurosurgical Society and the Societas Neurologica Japonica working throughout Japan. The survey was developed by J-ASPECT researchers based on the previous studies on physician burnout. We sent the survey to a total of 10791 physicians via postal mail; however, we could not mail the questionnaire to 420 physicians in the 3 Tohoku prefectures that were affected by great Tohoku earthquake. The cover letter accompanying the survey informed the physicians that only physicians who are currently working for stroke care are eligible for the survey, that their participation was voluntary, and that their responses would remain anonymous. They were requested to return the completed survey within 8 weeks. The survey contained items that collected data on relevant demographic variables and variables related to practice patterns. (Data Supplement). This study was approved by the Institutional Review Board of the National Cerebral and Cardiovascular Center, Japan.

Figure 1. Flow chart of sample selection process. MBI-GS indicates Maslach Burnout Inventory General Survey.
Measurement of Burnout, Depression, and Quality of Life

Burnout among physicians was measured using the Japanese version of the Maslach Burnout Inventory General Survey (MBI-GS), a validated version of the MBI, which is currently considered the gold standard for measuring burnout.9–11 This 16-item questionnaire7 contains 3 subscales that evaluate what are considered the 3 major domains of burnout: exhaustion, cynicism (depersonalization), and professional efficacy. Based on the results of previous studies using the MBI-GS, which reported that a high score on the emotional exhaustion and depersonalization subscale is an indication of physician burnout,2,11–13 and the findings from a survey of Japanese population,14 an exhaustion score >4.0 or a cynicism (depersonalization) score >2.6 were selected as primary criteria for burnout. The criteria for severe burnout status were an exhaustion score >4.0 and either a cynicism score >2.6 or a professional efficacy score <4.17. The use of ≥1 additional criterion for severe burnout (ie, the use of exhaustion+1 criteria) was adopted because exhibiting ≥1 other symptom of burnout besides exhaustion has been reported to be a more appropriate and reliable indicator of severe burnout among the general population15 compared with the approaches used in former studies of physician burnout.

For comparison of the study sample with the general population of Japanese workers, the MBI-GS scores of the participants were compared with the MBI-GS scores of 2843 Japanese office workers and 751 civil servants that one of our investigators had previously published.14

Psychological well-being was assessed using the Mental Health (MH) subscales of the Medical Outcome Study Short Form 36-Item Health Survey (SF-36), a valid and reliable instrument for measuring health-related quality of life.16

Statistical Analysis

Standard descriptive summary statistics were used to determine whether the participants had not been burned out, had been burned out, or had been severely burned out at the time of the survey.

Multivariable ordinal logistic regression was used to identify demographic and professional characteristics associated with burnout. Ordinal logistic regression models are used to estimate relationships between an ordinal dependent variable and a set of independent variables. An ordinal variable in this study is a variable that is categorical and ordered, burnout, and severe burnout.

Forward selection using the Akaike information criterion was used to select the best predictors. Observations from the missing data in the survey questionnaire were not incorporated in this study. The interaction (effect modification) between predictors was determined by evaluating whether the interaction terms were significant. All statistical analyses were conducted using SAS version 9.3 (SAS Institute Inc, Cary, NC) and STATA 11 (STATA Corp, College Station, TX) software, all tests were 2-sided, and all values that had a P value <0.05 were considered significant.

Results

Burnout Among Japanese Physicians Working in Stroke Care

Figure 1 shows the process used to select the study participants. Of a total of 11,211 board-certified neurosurgeons and neurologists practicing in any prefecture excluding the 3 prefectures affected by the Tohoku earthquake (n=469), a

Table 1. Personal Characteristics of Study Sample by Burnout Status (n=2635)

<table>
<thead>
<tr>
<th></th>
<th>Not Burned Out</th>
<th>Mild to Moderately Burned Out</th>
<th>Severely Burned Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1562</td>
<td>505</td>
<td>568</td>
</tr>
<tr>
<td>Percentage of sample</td>
<td>59.3</td>
<td>19.2</td>
<td>21.6</td>
</tr>
<tr>
<td>Male, %</td>
<td>92.0</td>
<td>93.1</td>
<td>90.7</td>
</tr>
<tr>
<td>Age, y</td>
<td>48.2 (±9.4)</td>
<td>46.3 (±8.9)</td>
<td>45.1 (±8.4)</td>
</tr>
<tr>
<td>MBI-GS scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaustion</td>
<td>2.06 (±0.98)</td>
<td>3.72 (±1.12)</td>
<td>4.89 (±0.58)</td>
</tr>
<tr>
<td>Cynicism (depersonalization)</td>
<td>1.12 (±0.73)</td>
<td>2.69 (±1.16)</td>
<td>3.77 (±1.23)</td>
</tr>
<tr>
<td>Personal accomplishment</td>
<td>4.36 (±1.61)</td>
<td>4.17 (±1.48)</td>
<td>3.41 (±1.58)</td>
</tr>
<tr>
<td>No. of hours slept/night</td>
<td>6.07 (±1.15)</td>
<td>5.88 (±0.94)</td>
<td>5.63 (±0.94)</td>
</tr>
<tr>
<td>No. of hours worked/wk</td>
<td>64.3 (±15.7)</td>
<td>66.9 (±16.1)</td>
<td>72.3 (±16.8)</td>
</tr>
<tr>
<td>No. of day-offs/wk</td>
<td>1.19 (±0.64)</td>
<td>1.10 (±0.66)</td>
<td>0.94 (±0.59)</td>
</tr>
<tr>
<td>No. of nightshifts/mo</td>
<td>2.62 (±2.80)</td>
<td>3.01 (±2.91)</td>
<td>3.67 (±3.64)</td>
</tr>
<tr>
<td>No. of after-hours calls/wk</td>
<td>1.69 (±2.92)</td>
<td>2.14 (±3.15)</td>
<td>2.92 (±3.84)</td>
</tr>
<tr>
<td>Percentage of time spent in stroke care</td>
<td>44.4 (±25.9)</td>
<td>47.3 (±26.6)</td>
<td>48.5 (±26.4)</td>
</tr>
<tr>
<td>No. of t-PA cases/y</td>
<td>2.06 (±3.20)</td>
<td>2.38 (±3.58)</td>
<td>2.68 (±3.86)</td>
</tr>
<tr>
<td>No. of patients under care</td>
<td>9.11 (±6.94)</td>
<td>9.81 (±6.65)</td>
<td>10.51 (±6.62)</td>
</tr>
<tr>
<td>No. of years of experience</td>
<td>22.6 (±9.28)</td>
<td>20.8 (±8.84)</td>
<td>19.6 (±8.36)</td>
</tr>
<tr>
<td>Income (10,000 Yen)</td>
<td>1488.0 (418.1)</td>
<td>1446.0 (394.0)</td>
<td>1376.8 (418.7)</td>
</tr>
<tr>
<td>SF-36 MH subscale</td>
<td>49.4 (±7.38)</td>
<td>42.5 (±7.81)</td>
<td>35.63 (±9.01)</td>
</tr>
</tbody>
</table>

Values are means (±SDs) or numbers of participants (percentages). 10,000 Yen indicates 10,000$; MBI-GS, Maslach Burnout Inventory General Survey; SF-36 MH score, Short Form 36 mental health subscale score; and t-PA, tissue-type plasminogen activator.
total of 2564 physicians remained for analysis. At the time
that they completed this survey, the study sample had been in
practice for a mean of 21.7±9.1 years (mean±SD), worked for
66.3±16.2 hours per week, slept 5.94±1.08 hours per night,
were on duty for 2.91±3.04 nights per month, and received
2.00±3.21 after-hours calls per week. Among these 2564

Figure 2. A and B, Prevalence of burnout among physicians and nonphysicians. C–F, Association between burnout and working hours,
sleep duration, experience hours, and time spent for stroke scare. Prevalence of burnout was calculated for stroke care physicians
(n=2635), civil servants (n=751), and office workers (n=2843). Percentage of burnout was determined by Maslach Burnout Inventory
General Survey. SF-36 MH indicates Short Form 36 mental health subscale score.
Table 2. Univariate Ordinal Logistic Regression for Burnout

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of hours slept/night</td>
<td>0.67</td>
<td>0.61–0.73</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>No. of hours worked/wk</td>
<td>1.02</td>
<td>1.02–1.03</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>No. of day-offs/wk</td>
<td>0.62</td>
<td>0.54–0.70</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>No. of nightshifts/mo</td>
<td>1.09</td>
<td>1.06–1.12</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>No. of after-hours calls/wk</td>
<td>1.10</td>
<td>1.07–1.13</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Percentage of time spent in stroke care/10% of time</td>
<td>1.05</td>
<td>1.02–1.08</td>
<td>0.001</td>
</tr>
<tr>
<td>No. of t-PA cases/y</td>
<td>1.17</td>
<td>1.07–1.26</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>No. of patients under care</td>
<td>1.11</td>
<td>1.06–1.17</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>No. of years of experience</td>
<td>0.97</td>
<td>0.96–0.98</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Income (10,000 Yen)</td>
<td>1.00</td>
<td>1.00–1.00</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Extra calls/5 calls</td>
<td>1.60</td>
<td>1.40–1.83</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>SF-36 MH Subscale</td>
<td>0.86</td>
<td>0.85–0.87</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Married, %</td>
<td>0.77</td>
<td>0.64–0.94</td>
<td>0.009</td>
</tr>
<tr>
<td>Children &lt;23 y (%)</td>
<td>1.09</td>
<td>0.92–1.29</td>
<td>0.345</td>
</tr>
<tr>
<td>Divorced, %</td>
<td>1.20</td>
<td>0.68–2.13</td>
<td>0.529</td>
</tr>
</tbody>
</table>

Odds ratios were obtained from ordinal logistic regression analysis. 1 million Yen indicates 12,000 US$. % time for spent stroke, % time for stroke care/10% incremental of time; experience year, experience years/10 incremental years (experience years were approximately proportional to age, and age was omitted for the adjustment); hours worked, hours worked/10 incremental hours; income, income/1 million Yen; number of extra calls, number of extra calls after hours/5 incremental calls/wk; number of holidays, number of holidays/wk; number of nightshifts, number of nightshifts/mo; number of patients, number of patients in charge/10 incremental patients; number of t-PA cases, number of t-PA cases/5 incremental cases/y; SF-36 MH score, Short Form 36 mental health subscale score; sleep time, sleep duration/d; and t-PA, tissue-type plasminogen activator.

Relationship Between Burnout and Workload, Sleep Duration, Work Experience, and Time Spent for Stroke Care and Other Significant Predictors

Analysis of the scores indicated that the number of hours worked per week and time spent in stroke care are positively associated with the severity of burnout (Figure 2B and 2C). In contrast, data analysis also indicates that sleep duration, years of experience, and SF-36 MH are inversely associated with burnout (Figure 2D–2F).

Thus, the study results indicate that a relatively greater workload per week, shorter sleep duration per night, less work experience, and low quality in mental health are all associated with increased prevalence of burnout and burnout severity.

To confirm this trend, we conducted univariate ordinal regression analysis (Table 2). The odds ratio (OR) for burnout was found to increase by ≈2% per additional working hour by the every increase of hours worked (OR=1.02; 95% confidence interval [CI], 1.02–1.03; P<0.001). In contrast, burnout increased as the number of hours slept per night decreased (OR=0.67; 95% CI, 0.61–0.73; P<0.001). Likewise, the OR of burnout was found to be inversely associated with number of years of experience (OR=0.96; 95% CI, 0.96–0.98; P<0.001).

The trend of increasing prevalence of burnout with an increasing proportion worked for stroke care is significant (OR=1.05; 95% CI, 1.02–1.08; P=0.001). Low SF-36 MH was also significantly associated with burnout (OR=0.86; 95% CI, 0.85–0.87; P<0.001).

Table 3 shows the predictors that remained in the final prediction model for burnout after performing forward selection. These predictors were number of hours worked per week, number of hours slept per night, number of day-offs per week, number of after-hours calls per week, number of years of experience, and number of patients under care and income (model 1). For neurosurgeons, the number of tissue-type plasminogen activator cases treated per year was also found to increase the risk of burnout by 17% (OR=1.17; 95% CI, 1.03–1.33; P=0.018; model 2). Including SF-36 MH gives a similar result (model 3). The factors associated with burnout are similar between all stroke providers and the subgroup of stroke providers that are neurosurgeons.

Neither combination of interaction terms among best predictor variables was significant. Predicted probabilities of burnout based on sleep duration, workload, and SF-36 MH adjusted for other significant predictors in multivariable ordinal logistic regression are shown in Figure 3.

Institutional Background, Quality of Care, and Burnout

The association of physicians working in teaching hospitals or CSC that were participating in a survey of CSC as part of the J-ASPECT study group. Because 3757 physicians were working at institutes participating in the J-ASPECT study in March 2011, the average response rate among active stroke care center physicians was estimated at 40.6%. Other relevant personal characteristics about the study sample are summarized in Table 1.

To investigate the possibility of selection bias, we checked the address of responders and nonresponders. The response rate was not statistically different in all 44 prefectures in this analysis (P=0.683). We also found no significant differences for age, sex, and specialty (neurologist versus neurosurgeon), burnout rate, workload per week, sleep duration per day, number of day-offs, and number of patients under care among early responders compared with late responders.

Review of the participants’ MBI-GS scores indicates that 41.1% (n=1055) of the study sample was burned out and 21.8% (n=560) was severely burned out at the time of the survey (Figure 2A). Consideration of the MBI-GS scores of 2843 office workers and 751 civil servants indicates that the prevalence of burnout and severe burnout among stroke care physicians (41.1% and 21.8%, respectively) is significantly higher than that among civil servants (28.8%, P<0.001 and 17.8%, P=0.0268, respectively) and office workers (27.1%, P<0.001 and 12.2%, P=0.004, respectively).

physicians, 1525 (59.4%) were used at 578 teaching hospitals or CSC that were participating in a survey of CSC as part of the J-ASPECT study group. Because 3757 physicians were working at institutes participating in the J-ASPECT study in March 2011, the average response rate among active stroke care center physicians was estimated at 40.6%. Other relevant personal characteristics about the study sample are summarized in Table 1.

To investigate the possibility of selection bias, we checked the address of responders and nonresponders. The response rate was not statistically different in all 44 prefectures in this analysis (P=0.683). We also found no significant differences for age, sex, and specialty (neurologist versus neurosurgeon), burnout rate, workload per week, sleep duration per day, number of day-offs, and number of patients under care among early responders compared with late responders.

Review of the participants’ MBI-GS scores indicates that 41.1% (n=1055) of the study sample was burned out and 21.8% (n=560) was severely burned out at the time of the survey (Figure 2A). Consideration of the MBI-GS scores of 2843 office workers and 751 civil servants indicates that the prevalence of burnout and severe burnout among stroke care physicians (41.1% and 21.8%, respectively) is significantly higher than that among civil servants (28.8%, P<0.001 and 17.8%, P=0.0268, respectively) and office workers (27.1%, P<0.001 and 12.2%, P=0.004, respectively).
values of modified Rankin scale at 30 days were not associated with burnout. We also investigated the process measures, discharge with antithrombotic therapy, discharge with anticoagulation therapy for patients with atrial fibrillation, and discharge with thrombolytic therapy (tissue-type plasminogen activator) and antithrombotic therapy by the end of hospital day 2. They were not significantly associated with burnout.

**Discussion**

This nation-wide survey of Japanese physicians working in stroke care revealed that this population experiences burnout at a rate considerably higher than that of the general population of Japanese workers. We also demonstrated that longer working hours, short sleep duration, relatively little experience, and low mental quality of life are associated with physician burnout.

The primary hypothesis examined in this study is that the most important risk factor for burnout among physicians working in stroke care is heavy workload, more specifically working an excessive number of hours per week. Whereas the mean number of hours worked per week by the study sample was 66.3 hours, those by the general Japanese population was 45.8 hours in 2010.27 These findings accord with previous research for general population demonstrating that working an excessive number of hours is a risk factor for burnout1 and fatigue.18 The study participants work considerably more than those by the general Japanese population, mean number of hours worked per week by the study sample was 66.3 hours, those by the general Japanese population was 45.8 hours in 2010.17 These findings accord with previous study of US physicians2,3 neither of these studies investigated the factors quantitatively. Other previous studies focused on the prevalence of burnout itself or the psychosocial background of the participants and did not discuss this point.19–21

The results of the present study also may indicate that sleep duration is associated with burnout. One prospective study reported that insomnia increased emotional exhaustion 3-fold.22 In 1 prospective observational study, <6-hour sleep caused the risk of clinical burnout.23 These support our finding, and less sleep is the potential risk factors for burnout. Among physicians, working long hours in addition to taking frequent after-hours calls may decrease sleep duration, cause sleep fragmentation, and increase the risk of burnout. Thus, sleep duration is another important and potential modifiable factor to consider in the prevention of burnout.

Furthermore, interventions aimed at reducing working hours and increasing sleep duration have been found to reduce the prevalence of burnout among physicians. Restriction of working hours in medical residency reduced the mean working hours of 7.5 hours and reduced burnout from 74% to 56%.24 One intervention that limited the number of hours increases sleep duration and reduces medical errors by >50%.25 All the findings may indicate that we should start the study whether the reduction of working hours and increase of sleep reduce the burnout among physicians in stroke care.

In addition, the burden of being responsible for emergency admission may have been associated with feelings of being overwhelmed,26 and physicians working in emergency medicine have been found to experience the highest rate of burnout among all US physicians.2 This is compatible with our study sample that tissue-type plasminogen activator cases, which are urgent, are associated with burnout for neurosurgeons. From the analysis of backgrounds of institutes, the

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Model 1 OR</th>
<th>95% CI</th>
<th>P Value</th>
<th>Model 2 OR</th>
<th>95% CI</th>
<th>P Value</th>
<th>Model 3 OR</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours slept/d</td>
<td>0.80</td>
<td>0.73–0.89</td>
<td>&lt;0.001</td>
<td>0.84</td>
<td>0.72–0.97</td>
<td>0.019</td>
<td>0.75–0.94</td>
<td>0.84</td>
<td>0.002</td>
</tr>
<tr>
<td>Day-offs/wk</td>
<td>0.83</td>
<td>0.71–0.96</td>
<td>0.012</td>
<td>0.65</td>
<td>0.52–0.82</td>
<td>&lt;0.001</td>
<td>0.85–0.87</td>
<td>Not selected</td>
<td></td>
</tr>
<tr>
<td>Hours worked/10 h</td>
<td>1.12</td>
<td>1.05–1.18</td>
<td>&lt;0.001</td>
<td>1.17</td>
<td>1.07–1.28</td>
<td>&lt;0.001</td>
<td>1.01–1.15</td>
<td>1.08</td>
<td>0.023</td>
</tr>
<tr>
<td>Experience years/10 y</td>
<td>0.90</td>
<td>0.81–1.00</td>
<td>0.051</td>
<td>0.96</td>
<td>0.93–0.99</td>
<td>0.021</td>
<td>Not selected</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Income/1 million Yen</td>
<td>0.97</td>
<td>0.94–0.99</td>
<td>0.002</td>
<td>0.96</td>
<td>0.93–0.99</td>
<td>0.021</td>
<td>...</td>
<td>0.98</td>
<td>0.036</td>
</tr>
<tr>
<td>Patients in charge (n)</td>
<td>1.08</td>
<td>1.03–1.14</td>
<td>0.004</td>
<td>Not selected</td>
<td>...</td>
<td>...</td>
<td>1.08</td>
<td>1.02–1.15</td>
<td></td>
</tr>
<tr>
<td>Extra calls/5 calls</td>
<td>1.26</td>
<td>1.10–1.45</td>
<td>0.001</td>
<td>1.24</td>
<td>1.03–1.50</td>
<td>0.021</td>
<td>Not selected</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>No. of operations</td>
<td>Not selected</td>
<td>...</td>
<td>...</td>
<td>0.90</td>
<td>0.83–0.98</td>
<td>0.011</td>
<td>Not selected</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>No. of t-PA cases</td>
<td>Not selected</td>
<td>...</td>
<td>...</td>
<td>1.17</td>
<td>1.03–1.33</td>
<td>0.018</td>
<td>Not selected</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>SF-36 MH Score</td>
<td>Not included</td>
<td>...</td>
<td>...</td>
<td>0.86</td>
<td>&lt;0.001</td>
<td>0.85–0.87</td>
<td>Not selected</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

CI indicates confidence interval; OR, odds ratio; SF-36 MH score, Short Foam 36 mental health subscale score; and t-PA, tissue-type plasminogen activator.

Model 1: Significant predictors in Table 2 were considered potential predictors. Forward selection with Akaike information criterion was conducted to select the best prediction model.

Model 2: Analyzed for neurosurgeon only (n=1673). Predictors specific for surgeons, number of operation, number of emergency operation, and number of operation for stroke were included.

Model 3: SF-36 MH score was included in model 1.
officially credited institutes for thrombolysis therapy are associated with slightly increased the risk of burnout. But, simultaneously, the official credited centers for hyperacute stroke care centers that satisfied the criteria of CSC by Joint Commissions reduced the risk of stroke care ≈21%. This result might suggest that sufficient staffing can reduce burnout, even in intensive care situations.

This study had several strengths that contributed to the reliability and validity of the findings. First, it was the first large study to show an association between physician burnout and workload in Asian countries. Because the rate of burnout among the physicians in this study was found to be similar to that among physicians in western countries,2,3,27,28 burnout seems to be a common phenomenon among physicians in both the east and the west.

Second, this study examined a sufficiently large sample of physicians with a homogenous training and practice background and varying workloads. In contrast, most previous studies were conducted in a single center using a sample size insufficiently large to identify an association between burnout and workload,29,30 with even studies using a relatively large sample identifying no association.27 However, these findings may be attributed to the fact that all of the participants in these studies worked relatively long hours, preventing comparison of the effect of workload among them.

Third, to the best of our knowledge, this study is the first study that demonstrated the close association between burnout and low quality of life assessed by SF-36 MH. Klersy et al31 reported that lower physical score of SF-36 was associated with emotional exhaustion among Italian healthcare providers of dialysis but no association with SF-36 MH score. The population

Table 4. Best Predictors in Multivariable Logistic Regression for Burnout From Institutional Backgrounds

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Odds Ratio</th>
<th>P Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperacute stroke care centers</td>
<td>0.79</td>
<td>0.089</td>
<td>0.61–1.04</td>
</tr>
<tr>
<td>Certified institutions for thrombolysis therapy</td>
<td>1.08</td>
<td>0.037</td>
<td>1.08–1.16</td>
</tr>
<tr>
<td>No. of experience years</td>
<td>0.73</td>
<td>&lt;0.001</td>
<td>0.64–0.84</td>
</tr>
<tr>
<td>No. of hours slept/night</td>
<td>0.78</td>
<td>&lt;0.001</td>
<td>0.68–0.88</td>
</tr>
<tr>
<td>No. of hours worked/wk</td>
<td>1.11</td>
<td>0.015</td>
<td>1.02–1.21</td>
</tr>
</tbody>
</table>

Forward section with Akaike information criterion was conducted to select the best prediction model.
was considerably different from ours because the burnout rate of Italian health workers was not different from Italian citizens. Also, high burnout rate among Japanese physicians working in stroke care enabled us to reveal the association between burnout and low quality of life.

Finally, this study demonstrated that the risk of burnout is inversely associated with the number of years of experience as had several previous studies. This phenomenon is likely because of the fact that promotion to an administrative position after acquiring a certain number of years of experience leads to a decreased clinical workload. It may also reflect a selection bias in those who are more severely burned out quit practice earlier in their career. Recent studies suggest that burnout may influence quality of care and lead to early retirement.

In addition, we found some association between burnout and those who in the institutions credited for hyperacute stroke care by Japanese government, which satisfied the components of CSC by the Joint Commissions. This may suggest that the centralization of stroke care in CSC helps to reduce burnout among stroke care. However, the sample size is limited for 59.4% responders and further study is needed for this issue.

Despite these strengths, this study also faced several limitations. First, this study used a cross-sectional design and was thus unable to determine the existence of any direct causal relationships. For example, we demonstrated a cross-sectional association between SF-36 MH scores of the physicians and burnout. Our analysis showed that SF-36 MH is a significant explanatory variable in ordinal logistic regression. However, linear regression analysis showed that the existence of burn-out is a significant predictor for low SF-36 MH after adjustment of age, hours slept, and hours worked (data not shown).

Thus, we need a prospective cohort study to determine the causality between burnout and potential risk factors in this study. Second, the percentage of female physicians examined in this study was smaller than that of the general population of female physicians in Japan, which was 18.9% of all physicians in 2010. Therefore, the findings may not be generalizable to female physicians. Third, selection bias may have been a significant limitation because physicians who were burned out may have been more or less likely to complete the survey. We cannot comment on how it might influence the generalizability of these observations. We found no significant difference in backgrounds, burnout rate, and workload among early responders compared with late responders using the standard procedure for examining the existence of selection bias, as described by Shanafelt et al. Direct comparison of responders and nonresponders could not be performed as the survey was anonymous.

In conclusion, the results of this study suggest that burnout is highly prevalent among Japanese physicians working in stroke care. The risk factors for burnout seem to be relatively fewer years of work experience, longer working hours per week, and shorter sleep duration per night. Additional prospective research is now needed to assist in the development of interventions to address this pressing problem.

Acknowledgments

We thank all the participants for completing the survey, Dr Manabu Hasegawa, Chief, Disaster Medical Response office, Deputy Director, Guidance of Medical Service Division, the Ministry of Labor, Welfare, and Health of Japan, for his cooperation with and designing of this study, and all the partners in the J-ASPECT study. Dr Nishimura designed data collection tools, monitored data collection for the whole study, wrote the statistical analysis plan, cleaned and analyzed the data, and drafted and revised the article. Dr Nishimura is guarantor. Drs Kitaoka and Fukushima wrote background and drafted and revised the article. A. Kada wrote the statistical analysis plan, monitored data collection for the whole study, and revised the draft. Drs Nakamura, Takegami, and Iihara designed survey questionnaires and revised the draft. Dr Iihara initiated the collaborative project, analyzed the data, and drafted and revised the article. All members of J-ASPECT designed the trial. Drs Nakagawara, Ogasawara, Ono, Shikokawa, Miyachi, Nagata, Toyoda, Matsuda, Kataoka, and Miyamoto validated the survey questions from the view of physicians and revised the draft.

Sources of Funding

The study was supported by grants from Health Labor Sciences Research grant for J-ASPECT task force (22-cardiovascular–general-001 grant; Dr Iihara, Principal Investigator, Ministry of Health, Labor, and Welfare, Japan). The authors’ institutions had no role in the design and conduct of the study; the collection, management, analysis, and interpretation of the data; or the preparation, review, or approval of the article.

Disclosures

All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare support from the Ministry of Health, Labor, and Welfare, Japan; no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years; and no other relationships or activities that could seem to have influenced the submitted work.

References


Cross-Sectional Survey of Workload and Burnout Among Japanese Physicians Working in Stroke Care: The Nationwide Survey of Acute Stroke Care Capacity for Proper Designation of Comprehensive Stroke Center in Japan (J-ASPECT) Study

Kunihiro Nishimura, Fumiaki Nakamura, Misa Takegami, Schunichi Fukuhara, Jyoji Nakagawara, Kuniaki Ogasawara, Junichi Ono, Yoshiaki Shiokawa, Shigeru Miyachi, Izumi Nagata, Kazunori Toyoda, Shinya Matsuda, Hiroharu Kataoka, Yoshihiro Miyamoto, Kazuyo Kitaoka, Akiko Kada and Koji Iihara
J-ASPECT Study Group

Circ Cardiovasc Qual Outcomes. 2014;7:414-422; originally published online May 13, 2014; doi: 10.1161/CIRCOUTCOMES.113.000159

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/7/3/414

Data Supplement (unedited) at:
http://circoutcomes.ahajournals.org/content/suppl/2014/05/16/CIRCOUTCOMES.113.000159.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/
1. Do you have a part-time job besides a full-time job?

□ No
□ Yes

2. On average, how long do you work in a week?  
   (Check the appropriate box.)

□ Less than 40 hours
□ 40 to 49 hours
□ 50 to 59 hours
□ 60 to 69 hours
□ 70 to 79 hours
□ 80 to 100 hours
□ More than 100 hours

3. How many times did you work night-duty last month?

Times of night duty ________ times per month

4. How many times were you called out at night? Please fill in the number of calls in each day of the last week.

<table>
<thead>
<tr>
<th>Seven days ago</th>
<th>Six days ago</th>
<th>Five days ago</th>
<th>Four days ago</th>
<th>Three days ago</th>
<th>Two days ago</th>
<th>Yesterday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. On average, how many holidays do you have in a week? Please check the most appropriate number.

□ None
□ One
6. On average, how many hours of sleep per day do you get at night during weekday? Please fill in the sleep hours and minutes. This time may be different from the time in which you are in bed.

_______ hours _______ minutes per day

7. On average, how many hours of sleep per day do you get at night during weekend? Please fill in the sleep hours and minutes. This time may be different from the time in which you are in bed.

_______ hours _______ minutes per day

8. On average, what percentage in a week do you spend as a non-medical care such as research or education? Please check the most appropriate box.

□ None
□ One to 10%
□ 11 to 20%
□ 21 to 30%
□ 31 to 50%
□ 51% or more

9. On average, what percentage in a week do you spend as a medical care for stroke patients? Please check the most appropriate box.

□ None
□ One to 24%
□ 25 to 49%
10. On average, how many patients do you have in charge? Please check the most appropriate box

- None
- One to four patients
- Five to Nine patients
- 10 to 14 patients
- 15 to 19 patients
- 20 or more patients

11. For patients who occurred a stroke within three hours, how many did you treat as a t-PA last year? Please choose the most appropriate number.

- None
- One to four patients
- Five to Nine patients
- 10 to 14 patients
- 15 to 19 patients
- 20 or more patients

Please answer from number 12 to 14 only if you perform surgical treatments including intravascular interventions; otherwise, skip to question 15.

12. How many neurosurgical operations did you perform including intravascular interventions last year? Please choose the most appropriate number.

- None
- One to 39 patients
- 40 to 79 patients
- 80 to 99 patients
- 100 to 119 patients
- 120 or more patients
13. How many CDV operations did you perform including intravascular interventions last year? Please choose the most appropriate number.

- None
- One to 24 patients
- 25 to 49 patients
- 50 to 74 patients
- 75 to 99 patients
- 100 or more patients

14. How many emergency operations with CDV did you perform including intravascular interventions last year? Please choose the most appropriate number.

- None
- One to 24 patients
- 25 to 49 patients
- 50 to 74 patients
- 75 to 99 patients
- 100 or more patients

15. How many years are you in practice? Please choose the appropriate number

- Less than 10 years
- 10 to 19 years
- 20 to 29 patients
- 30 to 39 patients
- 40 or more years

16. What is your specialty? Please choose the appropriate box

- Neurosurgery
- Neurology
- Emergency medicine
- Rehabilitation
17. What are your Board Certifications? Please check all appropriate boxes.

- Japan Neurosurgical Society Certified Neurosurgeon
- Societas Neurologica Japonica certified Neurologists
- Japanese Associations for Acute Medicine certified Acute Care Physician
- Japan Stroke Society certified Stroke Physician
- Japanese Society for Neuroendvascular Therapy certified Physician

18. How much is your annual income? Please choose the appropriate number

- Less than 5,000,000 yen
- 5,000,000 to 9,990,000 yen
- 10,000,000 to 14,990,000 yen
- 15,000,000 to 19,990,000 yen
- 20,000,000 or more yen

19. What is your relationship status? Please choose the appropriate box

- Single
- Divorced
- Widowed or widower
- Married

20. If you choose “Married” in question 19, please answer the following question. Does your spouse work outside of home?

- No
- Yes

If you choose “Yes” in question 20, please answer the following question.
21. What kind of professional field does your spouse work? Please check the box below.

- Medical doctor
- Other health care professionals
- Other

22. Do you have any children under 22 years old? Please check the box below.

- No
- Yes