Reducing Contrast-Induced Acute Kidney Injury Using a Regional Multicenter Quality Improvement Intervention

Jeremiah R. Brown, PhD; Richard J. Solomon, MD, FAHA; Mark J. Sarnak, MD; Peter A. McCullough, MD, MPH, FACC; Mark E. Splaine, MD; Louise Davies, MD; Cathy S. Ross, MS; Harold L. Dauerman, MD, FACC; Janette L. Stender, ARNP; Sheila M. Conley, RN; John F. Robb, MD, FACC; Kristine Chaisson, CCRN, MS; Richard Boss, MD, FACC; Peggy Lambert, RN, MBA, MS; David J. Goldberg, MD, FACC; Deborah Lucier, RN; Frank A. Fedele, MD, FACC; Mirle A. Kellett, MD, FACC; Susan Horton, DNP, FNP; William J. Phillips, MD, FACC; Cynthia Downs, MSN, RN; Alan Wiseman, MD, FACC; Todd A. MacKenzie, PhD; David J. Malenka, MD, FACC; for the Northern New England Cardiovascular Disease Study Group

Background—Contrast-induced acute kidney injury (CI-AKI) is associated with increased morbidity and mortality after percutaneous coronary interventions and is a patient safety objective of the National Quality Forum. However, no formal quality improvement program to prevent CI-AKI has been conducted. Therefore, we sought to determine whether a 6-year regional multicenter quality improvement intervention could reduce CI-AKI after percutaneous coronary interventions.

Methods and Results—We conducted a prospective multicenter quality improvement study to prevent CI-AKI (serum creatinine increase ≥0.3 mg/dL within 48 hours or ≥50% during hospitalization) among 21,067 nonemergent patients undergoing percutaneous coronary interventions at 10 hospitals between 2007 and 2012. Six intervention hospitals participated in the quality improvement intervention. Two hospitals with significantly lower baseline rates of CI-AKI, which served as benchmark sites and were used to develop the intervention, and 2 hospitals not receiving the intervention were used as controls. Using time series analysis and multilevel poisson regression clustering to the hospital level, we calculated adjusted risk ratios for CI-AKI comparing the intervention period to baseline. Adjusted rates of CI-AKI were significantly reduced in hospitals receiving the intervention by 21% (risk ratio, 0.79; 95% confidence interval: 0.67–0.93; \(P=0.005 \)) for all patients and by 28% in patients with baseline estimated glomerular filtration rate <60 mL/min per 1.73 m² (risk ratio, 0.72; 95% confidence interval: 0.56–0.91; \(P=0.007 \)). Benchmark hospitals had no significant changes in CI-AKI. Key qualitative system factors associated with improvement included multidisciplinary teams, limiting contrast volume, standardized fluid orders, intravenous fluid bolus, and patient education about oral hydration.

Conclusions—Simple cost-effective quality improvement interventions can prevent ≤1 in 5 CI-AKI events in patients with undergoing nonemergent percutaneous coronary interventions. (Circ Cardiovasc Qual Outcomes. 2014;7:693-700.)

Key Words: acute kidney injury ■ contrast media ■ percutaneous coronary intervention ■ quality improvement

More than 2 million cardiac catheterization and percutaneous coronary interventions (PCI) procedures are performed in the United States each year.¹ Depending on patient and procedural characteristics, contrast-induced acute kidney injury (CI-AKI) will occur in 3% to 14% of patients.² When CI-AKI occurs, patients have an increased risk of cardiovascular events, prolonged hospitalization, end-stage renal disease, all-cause mortality, and increased acute care costs of over $7500 per case.³⁻⁵

In response to the adverse effects of contrast exposure, the National Quality Forum established the patient safety objective to reduce the prevalence of CI-AKI⁶ and the Kidney Disease Improving Global Outcomes published guidelines for CI-AKI prevention.⁷ However, preventive measures to reduce CI-AKI have been applied inconsistently in US hospitals⁶ with >5-fold variability in adjusted rates of CI-AKI.² Over a decade has passed with no reports of continuous

Received January 24, 2014; accepted June 17, 2014.

From The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine, Lebanon, NH (J.R.B., M.E.S., C.S.R.); Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH (J.R.B., J.L.S., S.M.C., J.F.R., D.J.M.); Department of Community and Family Medicine, Lebanon, NH (J.R.B., T.A.M.); Fletcher Allen Health Care, Burlington, VT (R.J.S., H.L.D.); Tufts Medical Center, Boston, MA (M.J.S.); Baylor University Medical Center, Baylor Heart and Vascular Institute, Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, TX (P.A.M.); The Heart Hospital, Plano, TX (P.A.M.); Department of Veterans Affairs Medical Center, White River Junction, VT (L.D.); Concord Hospital, Concord, NH (K.C.); Catholic Medical Center, Manchester, NH (P.L., D.J.G.); Portsmouth Regional Hospital, Portsmouth, NH (D.L., F.A.F.); Maine Medical Center, Portland, ME (M.A.K.); Central Maine Medical Center, Lewiston, ME (S.H., W.J.P.) and Eastern Maine Medical Center, Bangor, ME (C.D., A.W.).

Correspondence to Jeremiah R. Brown, PhD, HB 7505, One Medical Center Dr, Lebanon, NH 03756, E-mail jbrown@dartmouth.edu

© 2014 American Heart Association, Inc.

Circ Cardiovasc Qual Outcomes is available at http://circoutcomes.ahajournals.org

DOI: 10.1161/CIRCOUTCOMES.114.000903

693
WHAT IS KNOWN

• Contrast-induced acute kidney injury (CI-AKI) is associated with increased morbidity and mortality after percutaneous coronary interventions.
• CI-AKI is a patient safety objective of the National Quality Form.
• Prophylactic hydration approaches have been effective in preventing CI-AKI in clinical trials.

WHAT THIS ARTICLE ADDS

• We describe a multicenter quality improvement effort to prevent CI-AKI.
• Team-based interventions included standardizing hydration orders, reducing NPO time to only 2 to 4 hours before percutaneous coronary interventions, mandating a fluid bolus before the procedure, and limiting contrast volume, and patient education about self-hydration using oral fluids was encouraged.
• There was a 21% (95% confidence interval = 7%–33%) in the rate of CI-AKI after the intervention across the 6 hospitals.

Contrast-induced acute kidney injury (CI-AKI) is a patient safety objective of the National Quality Form. Prophylactic hydration approaches have been effective in preventing CI-AKI in clinical trials.

Methods

Study Cohort

Hospitals

The Northern New England Cardiovascular Disease Study Group (NNECDSG) is a voluntary regional consortium of clinicians, hospital administrators, and healthcare research personnel who seek to improve continually the quality, safety, effectiveness, and cost of coronary revascularization. Of 10 member hospitals, 8 agreed to participate in the study and 2 who did not were used as controls.

Patients

Data were prospectively collected on consecutive patients undergoing PCI between January 1, 2007, and June 30, 2012 (n=21 067). Patients were excluded if they were emergent or had a history of renal failure requiring renal replacement therapy. Information was collected on patient characteristics, past medical, past cardiac history, cardiac anatomy and function, procedural priority, indication, process, and outcomes using standard data collection instruments (available online at www.nnecds.org).

Identification of Benchmark and Intervention Hospitals

Using data from January 1, 2007, to October 30, 2008, 2 hospitals were identified as having significantly lower rates of CI-AKI (2.3% versus 6.6%; P<0.001) than the other hospitals. These 2 hospitals were identified as benchmark sites. Their experience was used to inform the intervention, but these sites did not take part in the active intervention. Six hospitals agreed to participate in the intervention. Two hospitals did not participate in the study and were used as controls.

Quality Improvement Intervention Phase

The intervention phase began on November 1, 2008, and continued through June 30, 2012, directly after a 2-day regional meeting focused on CI-AKI as an improvement target for NNECDSG hospitals. Participating hospitals agreed to (1) form multidisciplinary teams including interventional cardiologists, cardiac catheterization laboratory managers and technicians, nursing representation from the intensive care unit and holding areas, cardiology administration, and nephrologists; (2) participate in monthly conference calls facilitated by a microsystems quality improvement coach; (3) participate in a process of identifying best practices through a formal review of the literature and structured interviews with benchmark sites; (4) participate in annual structured focus groups to capture qualitative data on barriers and successes to improvement; (5) have adjusted CI-AKI rates by hospital added to the NNECDSG biannual reports provided to all hospitals, administrators, and health professionals. In addition, hospitals were encouraged to have one member from each team undergo 6 months of quality improvement training in microsystems coaching. During the first year of the intervention, teams identified best practices by formal review of the literature as summarized by the primary investigator and a series of structured interviews with benchmark sites. Sites were encouraged but not required to implement identified best practices. In addition to monthly conference calls and annual focus groups, representatives from each hospital attended 3 regional NNECDSG meetings each year where reporting on trends of CI-AKI and discussions about implementing best practices and novel approaches to minimize contrast were presented and discussed.

Determination of CI-AKI

The last preprocedure serum creatinine and highest postprocedure serum creatinine obtained before to discharge were used to determine the incidence of CI-AKI. Because data were collected in the routine process of care, there was no protocol-mandated collection of postprocedure serum creatinine at a given time period. CI-AKI was defined using the Kidney Disease Improving Global Outcomes Guidelines definition: ≥0.3 (mg/dL) within 48 hours of the procedure or ≥50% increase in serum creatinine from baseline at any time during the hospitalization. Patients were hospitalized on average for 2.5 days (median, 3.0) during the baseline period and 2.7 days (median, 3.2) during the follow-up period.

Quantitative Analysis

Patient, disease, and procedural characteristics were compared between baseline and intervention time periods, overall and stratified by exposure: intervention, benchmark, control (Table I in the Data Supplement). We calculated the contrast volume exceeding a predicted threshold using the maximum acceptable contrast dose (MACD, 5 mL×body weight divided by baseline serum creatinine) and ≥3×creatinine clearance.15–17 We used χ² tests for categorical data and Student t tests for continuous data. To show temporal trends in the rates of CI-AKI, we first performed interrupted time series analyses and plotted monthly adjusted rates of CI-AKI adjusting for age, sex, body mass index, smoking, diabetes mellitus, hypertension, chronic obstructive pulmonary disease, peripheral vascular disease, heart failure, urgent priority, prior PCI, prior coronary artery bypass graft surgery, number of diseased vessels >70% stenosis, radial access, and baseline estimated glomerular filtration rate (eGFR) based on the Modification of Diet in Renal Disease equation.15–17 Interrupted time series analysis compares the linear trend in values before and after the intervention. We used multilevel Poisson regression with a random intercept for each hospital. Poisson regression was used for the binary outcome in to yield risk ratios (RR) between the intervention and baseline periods adjusting for the same covariates listed above. The SE of multilevel regression allowed us to adjust for patient-level covariates while accounting for interdependence of patients within hospitals. In addition, we conducted
Results
All 6 intervention hospitals formed multidisciplinary teams. The teams met independently every month separately or as part of monthly catheterization laboratory staff meetings with CI-AKI as a major focus. Each team included cardiologists, cardiac administrator(s), catheterization laboratory staff and manager(s), nursing managers, and a nephrologist. Each site participated in structured monthly multisite conference calls for quality improvement training, provided status updates, and shared successes and barriers to improvement. All teams participated in annual structured focus groups. Three of the 6 hospitals elected to undergo additional microsystems quality improvement training.

Between January 1, 2007 and June 30, 2012, 21,067 consecutive patients underwent a nonemergent PCI at the 8 participating hospitals and 2 control hospitals. Compared with the baseline phase (n=6983), patients in the intervention phase (n=14084) were older, more likely to have major comorbidities including diabetes mellitus, hypertension, prior myocardial infarction, history of previous PCI, and congestive heart failure, and had more multivessel coronary artery disease (Table 1). Radial access was more common during the intervention period. Total contrast volumes decreased from 290.8 mL/case in the baseline period to 237.5 mL/case during the intervention (P=0.001). Overall, fewer patients exceeded MACD (28.5% and 19.7%; P<0.001) or 3× the creatinine clearance (30.5% and 41.0%; P<0.001). There were small differences in patient and procedural characteristics between intervention, benchmark, and control hospitals (Table I in the Data Supplement).

Change in CI-AKI
Using a prospective quality improvement intervention, the rate of CI-AKI, adjusted for case-mix, was significantly reduced in the 6 intervention hospitals from 6.7% during the baseline period to 5.4% (P=0.005; Figure 1, left) during the intervention period (crude rates 6.6% and 5.5%). CI-AKI in benchmark hospitals changed from 2.3% in the baseline period to 3.0% (crude rates 2.3% and 3.1%) during the intervention period (P=0.061). Control hospitals had no significant difference in CI-AKI with 5.0% at baseline and 6.1% (crude rates 5.0% and 6.2%) during the intervention period (P=0.665).

We plotted adjusted rates of CI-AKI by month over time (Figure 2). Using interrupted time series analyses, we confirmed a statistically significant reduction in adjusted rates of CI-AKI.
from baseline to follow-up in the intervention group (coefficient, −0.011; \(P=0.036\)). There were no significant change in adjusted rates of CI-AKI in the benchmark hospitals (coefficient, 0.008; \(P=0.120\)) or control hospitals (coefficient, 0.014; \(P=0.342\)).

After hierarchical adjustment for known confounders (Table 2), intervention hospitals significantly reduced CI-AKI by 21% for all patients with RR 0.79 (95% CI: 0.67–0.93; \(P=0.005\)). Benchmark and control hospitals had no significant change in CI-AKI during the intervention period: benchmark hospitals (RR, 1.32; 95% CI: 0.99–1.78; \(P=0.061\)); control hospitals (RR, 1.15; 95% CI: 0.61–2.15; \(P=0.665\)).

We then identified nearest neighbor matches for the baseline (n=6980) and intervention phases (n=6979). Using propensity-matched patients in the intervention hospitals (n=8015), CI-AKI was reduced from 6.6% to 4.5% with a RR of 0.68 (95% CI: 0.56–0.82; \(P<0.001\)). There was no change in the benchmark hospitals (2.3%–2.3%; RR, 1.02; 95% CI: 0.71–1.45; \(P=0.919\)) or control hospitals (5.0%–5.9%; RR, 1.17; 95% CI: 0.60–2.30; \(P=0.647\)).

Sub-Group Analyses

There were 4131 patients with eGFR <60 mL/min per 1.73 m² considered at high-risk of CI-AKI at baseline. Among these patients, CI-AKI was reduced in the intervention hospitals from 14.0% to 10.0% (\(P=0.007\)) with crude CI-AKI rates 13.9% and 10.1%. (Figure 1, right). High-risk patients in the benchmark (6.8%–7.4%; crude rates 5.8% and 8.1%) and control hospitals (10.8% and 9.9%; crude rates 8.6% and 9.9%) had no significant changes in CI-AKI. Interrupted time series analysis demonstrated intervention hospitals significantly reduced the rate of CI-AKI (Figure 3; \(P=0.004\)); however, no significant decreases in the rate of CI-AKI in the benchmark (\(P=0.566\)) or control (\(P=0.579\)) hospitals. After hierarchical adjustment for known confounders (Table 2), intervention hospitals significantly reduced CI-AKI by 28% in high-risk patients with baseline eGFR<60 mL/min per 1.73 m² (RR, 0.72; 95%CI: 0.57–0.91; \(P=0.007\)). Benchmark and control hospitals had no significant change in CI-AKI during the intervention period among patients with baseline eGFR<60 mL/min per 1.73 m²: benchmark (RR, 1.01; 95% CI: 0.65–1.55; \(P=0.978\)); control (RR, 0.98; 95% CI: 0.64–1.52; \(P=0.9\)).

Among the patients with eGFR≥60 mL/min per 1.73 m², CI-AKI was reduced from 4.5% to 4.2% in the intervention hospitals (RR, 0.92; 95% CI: 0.73–1.14; \(P=0.430\)). CI-AKI increased among the benchmark hospitals from 1.4% to 1.9% (RR, 1.52; 95% CI: 1.01–2.29; \(P=0.046\)) and among the control hospitals from 3.8% to 5.1% (RR, 1.21; 95% CI: 0.54–2.74; \(P=0.642\)).

We then determined whether individual hospitals in the intervention group all succeeded in reducing CI-AKI. We found that 4 of the 6 hospitals reduced their rate of CI-AKI for all patients and among the high-risk patients with eGFR<60 mL/min per 1.73 m². Three of these hospitals reducing the rate of CI-AKI had a team member undergo additional microsystems quality improvement coaching training. The 2 hospitals that did not reduce the rate of CI-AKI demonstrated no significant temporal trends.

Benchmark hospitals were selected for best practices in preventing CI-AKI. As such, during the baseline period, intervention hospitals had 3-fold the rate of CI-AKI for
all patients (RR, 2.94; 95% CI: 2.23–3.88; \(P=0.001\)) and a 2-fold higher rate of CI-AKI among high-risk patients with eGFR <60 mL/min per 1.73 m² (RR, 2.19; 95% CI: 1.47–3.26; \(P=0.001\)) compared with benchmark hospitals. During the intervention, intervention hospitals reduced the difference in CI-AKI from 2.94 to 1.82 (RR, 1.82; 95% CI: 1.23–2.67; \(P=0.002\)) with no significant difference among the high-risk patients with eGFR <60 mL/min per 1.73 m² (RR, 1.25; 95% CI: 0.96–1.64; \(P=0.1\)).

Other Clinical End Points

Among the 6 intervention hospitals, there were significant reductions observed in other clinical end points including in-hospital mortality (0.6%–0.2%; RR, 0.44; 95% CI: 0.24–0.82; \(P=0.009\)) and bleeding complications (1.7%–1.0%; RR, 0.59; 95% CI: 0.43–0.83; \(P=0.002\)); however, there was no change in emergent coronary artery bypass graft surgery (0.2%–0.1%; RR, 0.76; 95% CI: 0.30–1.97; \(P=0.578\)). Benchmark clinical end points improved for bleeding (1.4%–0.8%; RR, 0.55; 95% CI: 0.36–0.85; \(P=0.006\)), and no difference for in-hospital mortality (0.2%–0.4%; RR, 1.98; 95% CI: 0.80–4.86; \(P=0.137\)) or emergent coronary artery bypass graft surgery (0.17%–0.04%; RR, 0.21; 95% CI: 0.04–1.06; \(P=0.059\)). Control hospitals had no significant changes in in-hospital mortality (0.4%–0.5%; RR, 1.31; 95% CI: 0.14–12.55; \(P=0.817\)), bleeding (0.72%–0.62%; RR, 0.87; 95% CI: 0.16–4.75; \(P=0.873\)), or emergent coronary artery bypass graft surgery (0.00% and 0.47%; \(P=0.252\)).

Characteristics of Improvement Intervention

Using qualitative analysis, we identified themes associated with the success of the quality improvement effort, organizing them by domain (Table 3). High functioning teams had multidisciplinary members with clinical champions and multiple team leaders for core improvement targets. Key barriers for teams conducting improvement efforts included variation in physician ordering, changing nothing by mouth (NPO) orders, and the need to unlearn old protocols. Key improvement successes included change in behavior with an increased awareness toward CI-AKI prevention, standardized order sets, minimizing contrast volume by reducing test injections and eliminating ventriculography, mandating procedure delays to allow for intravenous fluid bolus, staging procedures, and patient self-hydration.

We then conducted univariable and multivariable hierarchical Poisson regression to evaluate the magnitude of the effect for each identified quality improvement strategy reported by intervention hospitals. We show the number of centers reporting the use of the strategy along with crude and adjusted relative risk reductions for each strategy in Table 4. Based on our quantitative and qualitative data, we identified and statistically modeled a number quality improvement strategies used by centers to prevent CI-AKI using statistical methods reported by Bradley et al. Among the 6 intervention hospitals, only 4 hospitals were identified as having a change in culture in how CI-AKI prevention strategies were incorporated in staff knowledge, attitudes, and practice included statements by teams stating people care about this now. Among these 4 hospitals, there was consistency in having clinical champions, reducing NPO time, educating patients to self-hydrate, and teams had undergone quality improvement training. The effect of other strategies in reducing CI-AKI varied across hospitals (Table 4).

Discussion

Our quality improvement efforts significantly reduced adjusted rates of CI-AKI across 6 intervention hospitals by 21% with no change observed in the benchmark or control hospitals. In a propensity-matched analysis, CI-AKI was reduced by 32% across the 6 intervention hospitals with no change in the benchmark or control hospitals. Among high-risk patients with eGFR <60 mL/min per 1.73 m², adjusted rates of CI-AKI were reduced by 28% in the intervention hospitals. The intervention to reduce CI-AKI included the formation of multidisciplinary teams, adoption of standardized order sets for intravenous volume expansion, reducing NPO status to 2 to 4 hours before the procedure, patient education about self-hydration with oral fluids before and after the procedure, and efforts to decrease contrast volume. In this 6-year study, we demonstrate that simple cost-effective hospital quality improvement interventions

Table 2. Contrast-Induced Acute Kidney Injury Before and After Intervention

<table>
<thead>
<tr>
<th>Intervention Exposure</th>
<th>All Patients</th>
<th>Patients With eGFR <60, mL/min per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RR 95% CI</td>
<td>(P) Value</td>
</tr>
<tr>
<td>Intervention hospitals</td>
<td>0.79 (0.67–0.93)</td>
<td>0.005</td>
</tr>
<tr>
<td>Benchmark hospitals</td>
<td>1.32 (0.99–1.78)</td>
<td>0.061</td>
</tr>
<tr>
<td>Control hospitals</td>
<td>1.15 (0.61–2.15)</td>
<td>0.665</td>
</tr>
</tbody>
</table>

Risk ratio and 95% confidence intervals estimated from poisson regression clustering to hospital and adjusting for age, sex, body mass index, smoking, diabetes mellitus, hypertension, chronic obstructive pulmonary disease, peripheral vascular disease, heart failure, urgent priority, prior PCI, prior CABG surgery, number of diseased vessels >70% stenosis, radial access, and baseline eGFR. CABG indicates coronary artery bypass graft; CI, confidence interval; eGFR, estimated glomerular filtration rate; PCI, percutaneous coronary intervention; and RR, risk ratio.

can prevent CI-AKI in 1 of 5 patients undergoing nonemergent PCI and in 1 of 4 patients with baseline chronic kidney disease (eGFR<60 mL/min per 1.73 m²).

Table 3. Domains and Key Themes in Hospital CI-AKI Quality Improvement

<table>
<thead>
<tr>
<th>Domain</th>
<th>Key Themes in CI-AKI Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teams</td>
<td>High performance teams had multidisciplinary team members, clinical champions, empowered nurses, multiple team champions, protected time for team meetings and improvement work, regular scheduled meetings, and quality improvement training (LEAN, six-sigma, microsystems)</td>
</tr>
<tr>
<td>Intervention Barriers</td>
<td>Challenges included variation in physician ordering, variation in protocols, unlearning old protocols, NPO status of the patient, education, documentation, data collection, working with transferring facilities, physician and patient noncompliance to orders, staffing, resources, time, staff buy-in, trade-offs with other quality targets</td>
</tr>
<tr>
<td>Patient and Process Interventions</td>
<td>Hospitals adopted benchmark hospital protocols, standardized intravenous order sets, reduced NPO status to 2 to 4 h before procedure, stop nephrotoxic drugs before procedure. Hospitals also developed readiness checklists including volume status of the patient and fluid bolus, delayed procedures to allow for fluid bolus, limited contrast volume and exposure, eliminating left ventriculography, and conducted patient education about self-hydration using oral fluids (8×8 oz glasses of water 12 h pre- and 12 h after procedure)</td>
</tr>
<tr>
<td>Factors supporting success</td>
<td>Hospital changes in behavior during the intervention included increased awareness, standardized intravenous fluid order sets, reduced NPO status to 2 to 4 h before procedure, staff and institutional buy-in, hydrating patients before and after the procedure, staff and patient education, limiting contrast volume, precalculated safe contrast dose per patient using the maximum acceptable contrast dose equation (5 mL×body weight in kg/baseline serum creatinine), staging procedures, delaying procedures to allow for fluid bolus, and quality improvement training</td>
</tr>
</tbody>
</table>

CI-AKI indicates contrast-induced acute kidney injury.

There have been several studies of interventions to reduce the risk of CI-AKI. Randomized trials have evaluated volume expansion protocols, the use of normal saline, sodium bicarbonate, n-acetylcysteine, or other reagents thought to mitigate the risk of CI-AKI. Other studies have examined the type and volume of contrast. In general, study results have supported volume expansion and minimizing contrast exposure.

However, there have been no investigations of an interdisciplinary quality improvement effort to prevent CI-AKI in a decade since the Michigan Cardiovascular Consortium reported on contrast nephropathy and multiple quality indicators from 1998 to 2002 intervention. Moscucci and the Michigan Cardiovascular Consortium leveraged similar techniques to our early work in the NNECDSG and demonstrated significant improvement across multiple quality indicators including contrast nephropathy. Using a high-intensity quality improvement design and leveraging quality improvement coaching, in this investigation we promoted change from within organizations to apply the best evidence based medicine to prevent CI-AKI. We did this by forming multidisciplinary teams, provided a structure for protocol transparency and sharing, data feedback mechanisms, and quality improvement training.

Key attributes associated with improvement efforts reported by hospital teams included the development of multidisciplinary teams with clinical champions, standardization of fluid protocols including mandating an intravenous fluid bolus before the procedure based on benchmark hospital successes, decreasing NPO length from 12 hours to 2 to 4 hours, patient education to self-hydrate before and after the procedure with 8 oz glasses of water, and minimizing contrast volume during the procedure by eliminating left ventriculography, limiting contrast, and calculating safe contrast volume thresholds before PCI (using the MACD).

Qualitative findings identified key challenges to implementing clinical workflow improvements during our intervention period. Teams had difficulties in implementing new fluid order sets when migrating from physician write-in orders to a standardized fluid protocol across all providers using either a normal saline or sodium bicarbonate approach.
changes in NPO status of the patient commonly had to be changed from 12 hours (or before midnight) to 2 to 4 hours before the procedure. High functioning teams adapted novel approaches to patient volume expansion and prevention against dehydration by developing patient educational materials to encourage self-hydration. Recent evidence supports the use of oral hydration as an effective alternative to intravenous fluids and was incorporated into patient educational.20,22 The greater use of both oral and intravenous fluids likely worked to reduce the proportion of subjects who were volume depleted going into the procedure and decreased the risk of CI-AKI.

During our study, cardiologists adopted new techniques and technologies to minimize the use of contrast. These included routinely calculating a prespecified safe contrast-limit for the procedure and the use of contrast sparing devices. In some hospitals, when the contrast limits where met during a procedure, new approaches evolved to stage procedures to avoid exceeding the MACD.3 Overall, hospitals reduced the volume of contrast during the intervention period from 231 mL to 219 mL per case (P=0.038; Table 1). It is likely that engineering stops in the clinical workflow to allow for a procedure to be delayed if the prescribed volume expansion has not been completed and to stage a PCI if the contrast volume exceeds a predicted threshold (5 mL×body weight divided by baseline serum creatinine or >3× creatinine clearance)3,10 contributed significantly to the decrease in CI-AKI. Fewer patients exceed a safe dose of contrast during the intervention period using either the MACD3 (28.5% at baseline and 19.7% during the intervention; P<0.001) or 3× the creatinine clearance (50.5% and 41.0%; P<0.001).3,10 Intervention hospitals had a much larger reduction in patients exceeding the MACD with 24.6% compared with baseline at 41.9% (P<0.001), whereas benchmark hospitals showed a small reduction of 13.0% during the intervention compared with 17.0% at baseline (P<0.001).

About changes in contrast type, benchmark hospitals used Isovue (iopamidol, Bracco, Monroe, NJ) in 95.4% of cases at baseline and 97.1% during the intervention. Intervention hospitals from baseline to postintervention increased their use of Isovue from 2.4% to 5.1%. Omnipaque (iowexol, General Electric Healthcare, Little Chalfont, UK) by 8.9% to 10.5%. Ultravist (iopromide, Bayer, Whippany, NJ, USA) by 4.6% to 11.9%, and reduced Visipaque (iodixanol, General Electric Healthcare, Little Chalfont, UK) from 30.9% to 26.4%.

During our improvement intervention, we documented a small increased use of a radial artery access. Radial access avoids cannulation of the descending aorta and may reduce the risk of atheroembolic renal disease. Radial artery access also decreases the risk of bleeding that can be associated with renal damage. Our analysis cannot exclude the possibility that factors other than the intervention might have affected the outcomes; therefore, we controlled for radial access in our models.

Our study has several limitations. First, we did not conduct a randomized controlled trial, which raises the question of whether our results could be secondary to unmeasured confounding. We did control for differences in patient characteristics between the baseline and intervention periods with special attention to those known to be associated with CI-AKI. In the event, our study is limited by unmeasured confounding, we demonstrate that patients presenting for PCI in our intervention period had more complex disease and comorbidities than those patients during our baseline phase; therefore, not adjusting for these factors likely biases our effects toward the null and underestimates the true effect of the intervention. Second, hospitalization time for our PCI patients was short, averaging 48 hours, and did not allow for the serial measurement of serum creatinine for the 5 days commonly used in randomized trials to document the trend in renal function given that the peak incidence of CI-AKI is thought to occur at 3 to 5 days.21 We were limited to our registry data collection which included a baseline preprocedure creatinine and the highest postprocedure serum creatinine before discharge. As such, we likely underestimated the true incidence of CI-AKI and may have underestimated the true benefit of the intervention. However, the average length of stay was 2.7 days (median, 2 days) for the baseline period and 2.6 days (median 2 days) for the follow-up period; therefore, most patients at least had 48 hours of follow-up before discharge.

Third, starting in 2010, our quality improvement effort competed in some centers with efforts to introduce radial access as a key quality driver to reduce length of stay and bleeding complications. Qualitative data captured from teams confirmed that radial access was a competing quality target with CI-AKI and may have diverted AKI improvement team efforts from mitigating AKI toward focusing on radial access adoption, leading to an underestimate of the true potential effect of our intervention. Fourth, responses to the baseline and intervention phase focus groups may be subject to recall bias. Teams not meeting their goals or who felt they were under performing because of barriers or attitudes toward improvement could be more likely to recall adverse aspects of their performance or institutional buy-in. Teams that performed well may more easily recall successes or fail to recall failures or barriers to improvement. Fifth, we acknowledge that the implementation of electronic medical records (EMRs) were occurring during our study period. Our qualitative analyses from structured annual focus groups and monthly conference calls demonstrated that EMR installation (such as Epic) was a priority barrier against CI-AKI improvement efforts and teams. Only one hospital underwent an Epic or other EMR transitions during the study; however, the teams was also then able to develop the standardized order sets to be incorporated with the initialization of the new EMR. When we model the impact of the site implementing a new EMR, the adjusted RR of CI-AKI is 0.58 (0.46–0.74; Table 4). Sixth, although intervention hospitals significantly reduced their rate of CI-AKI, they did not achieve similar performance to the CI-AKI rate of the benchmark hospitals. The benchmark hospitals began with a consistent significantly superior low rate of CI-AKI. Even by adopting bench, the intervention hospitals were able to significantly improve their rate of CI-AKI but were not able to reach the baseline rate of the benchmark hospitals for all patients; however, intervention hospitals were not significantly different from benchmark hospitals among high-risk patients with eGFR<60 mL/min per 1.73 m². This may suggest that the mere adoption of a formula may not be sufficient to maximize prevention of CI-AKI. Despite efforts to standardize order sets, educate staff, and change culture, teams from benchmark sites well may still differ in their detailed approaches not captured by a CI-AKI protocol. Last, there is a concern about generalizability of the results. However, we know that the
NNECDSG risk models have been well generalized to other cardiac surgery populations in the United States and think that the lessons learned in our study will be generalizable to other patient populations and hospitals across the United States. From our experience, the formation of multidisciplinary teams to evaluate the system of care for patients undergoing nonemergent PCI can identify cost-effective solutions to prevent CI-AKI from standardizing fluid orders, learning how to minimize contrast use, and educating patients to self-hydrate. We found this approach to be effective in multiple centers in our region.

There are likely to be additional randomized trials of specific interventions to decrease the risk of CI-AKI. Currently, the Prevention of Serious Adverse Events Following Angiography (PRESERVE) trial will aid in our understanding of whether sodium bicarbonate, normal saline, n-acetylcysteine, or combinations of these agents reduce the risk of CI-AKI. Although trials may identify additional tools to help avoid the development of CI-AKI, our experience provides a simple path toward CI-AKI prevention using simple team-based quality improvement implementation techniques that are immediately available to anybody caring for an at risk population.

In summary, to our knowledge, this research is the first multicharacter approach to preventing CI-AKI using simple quality improvement implementation techniques. By developing multidisciplinary teams, routine meetings, incorporating standardized fluid protocols, mandating intravenous fluid boluses before the procedure, limiting dehydration of the patient before the procedure, and limiting contrast dye volume, CI-AKI was prevented in 1 of every 5 patients undergoing nonemergent PCI.

Acknowledgments

We thank the Northern New England Cardiovascular Disease Study Group hospitals and quality improvement teams participating in the contrast-induced acute kidney injury quality improvement initiative.

Sources of Funding

This project was supported by grant K01 HS018443 (Dr Brown) from the Agency for Healthcare Research and Quality and, in part, by K24 DK078204 (Dr Sarnak) from the National Institute of Diabetes and Digestive and Kidney Diseases and the Northern New England Cardiovascular Disease Study Group.

Disclosures

Dr Brown received funding from the Agency for Healthcare Research and Quality (K01 HS018443). Additional funding was provided for Dr Sarnak by from the National Institute of Diabetes and Digestive and Kidney Diseases (DK078204) and the Northern New England Cardiovascular Disease Study Group. The other authors report no conflicts.

References

Reducing Contrast-Induced Acute Kidney Injury Using a Regional Multicenter Quality Improvement Intervention

for the Northern New England Cardiovascular Disease Study Group

Circ Cardiovasc Qual Outcomes. 2014;7:693-700; originally published online July 29, 2014; doi: 10.1161/CIRCOUTCOMES.114.000903

Circulation: Cardiovascular Quality and Outcomes is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7705. Online ISSN: 1941-7713

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/7/5/693

Data Supplement (unedited) at:
http://circoutcomes.ahajournals.org/content/suppl/2014/07/29/CIRCOUTCOMES.114.000903.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/
Table S1. Patient and Procedural Characteristics for Benchmark, Intervention, and Control Hospitals

<table>
<thead>
<tr>
<th>Variable</th>
<th>Benchmark</th>
<th>Intervention</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>8,513</td>
<td>11,634</td>
<td>920</td>
</tr>
<tr>
<td>Patient Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>64.5 ± 11.7</td>
<td>64.8 ± 11.8</td>
<td>64.1 ± 12.0</td>
</tr>
<tr>
<td>Female</td>
<td>31.8</td>
<td>29.1</td>
<td>31.3</td>
</tr>
<tr>
<td>Body mass index</td>
<td>30.6 ± 6.4</td>
<td>30.3 ± 6.3</td>
<td>30.9 ± 6.6</td>
</tr>
<tr>
<td>Current smoker</td>
<td>24.5</td>
<td>20.6</td>
<td>25.3</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>33.6</td>
<td>32.5</td>
<td>30.7</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>14.6</td>
<td>13.7</td>
<td>12.3</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>22.0</td>
<td>18.4</td>
<td>19.7</td>
</tr>
<tr>
<td>Cardiac Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous myocardial infarction</td>
<td>28.6</td>
<td>29.1</td>
<td>30.4</td>
</tr>
<tr>
<td>Prior PCI</td>
<td>38.3</td>
<td>37.2</td>
<td>45.7</td>
</tr>
<tr>
<td>Prior CABG</td>
<td>20.0</td>
<td>18.3</td>
<td>22.0</td>
</tr>
<tr>
<td>Hypertension</td>
<td>76.9</td>
<td>77.7</td>
<td>80.9</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>89.7</td>
<td>81.9</td>
<td>82.5</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>12.1</td>
<td>10.5</td>
<td>12.7</td>
</tr>
<tr>
<td>Ejection fraction < 40%</td>
<td>7.3</td>
<td>5.1</td>
<td>6.4</td>
</tr>
<tr>
<td>Number of diseased vessels >70% stenosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>49.4</td>
<td>54.5</td>
<td>55.9</td>
</tr>
<tr>
<td>2</td>
<td>29.9</td>
<td>29.9</td>
<td>28.2</td>
</tr>
<tr>
<td>3</td>
<td>19.9</td>
<td>14.8</td>
<td>14.8</td>
</tr>
<tr>
<td>Baseline Renal Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR (mL/min/1.73 m²)</td>
<td>81.1 ± 2.9</td>
<td>78.5 ± 25.2</td>
<td>76.0 ± 22.3</td>
</tr>
<tr>
<td>Pre-Procedural Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urgent priority</td>
<td>63.6</td>
<td>61.8</td>
<td>63.2</td>
</tr>
<tr>
<td>Pre-procedural IABP</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Procedural Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial access</td>
<td>13.5</td>
<td>9.2</td>
<td>6.7</td>
</tr>
<tr>
<td>Number of stents</td>
<td>1.7 ± 1.1</td>
<td>1.5 ± 1.0</td>
<td>1.6 ± 1.0</td>
</tr>
<tr>
<td>Contrast volume</td>
<td>232 ± 2166</td>
<td>251 ± 118</td>
<td>248 ± 92</td>
</tr>
<tr>
<td>MACD</td>
<td>14.4</td>
<td>29.0</td>
<td>29.6</td>
</tr>
<tr>
<td>3xCCC</td>
<td>35.5</td>
<td>50.8</td>
<td>48.9</td>
</tr>
<tr>
<td>Hospital characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of hospitalization</td>
<td>2.5 ± 2.9</td>
<td>2.7 ± 3.2</td>
<td>3.2 ± 3.7</td>
</tr>
</tbody>
</table>

* eGFR, estimated glomerular filtration rate; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft surgery; IABP, intra-aortic balloon pump; MACD: maximum acceptable contrast dose; 3xCCC: 3 times creatinine clearance.