Impaired Cognition and Brain Atrophy Decades After Hypertensive Pregnancy Disorders

Michelle M. Mielke, PhD; Natasa M. Milic, MD; Tracey L. Weissgerber, PhD; Wendy M. White, MD; Kejal Kantarci, MD; Thomas H. Mosley, PhD; B. Gwen Windham, MD; Brittany N. Simpson, BA; Stephen T. Turner, MD; Vesna D. Garovic, MD

Background—Hypertensive pregnancy disorders have been associated with subjective cognitive complaints or brain white-matter lesions 5 to 10 years after the hypertensive pregnancy. The long-term effects of hypertensive pregnancies on brain structure and cognitive function remain unknown.

Methods and Results—This study included 1279 women who participated in the Family Blood Pressure Project Genetic Epidemiology Network of Arteriopathy (GENOA) study. As part of the ancillary Genetics of Microangiopathic Brain Injury (GMBI) study, a neurocognitive battery was administered; 1075 also had a brain magnetic resonance imaging. A history of a hypertensive pregnancy disorder was obtained by a self-report using a validated questionnaire. Linear models fit with generalized estimating equations were used to assess the association between hypertensive pregnancy disorders and cognition, adjusting for age, race, education, body mass index, smoking, current hypertension, hypertension duration, and family history of hypertension. Regression models for the brain magnetic resonance imaging outcomes also were adjusted for total intracranial volume. Women with histories of hypertensive pregnancy disorders performed worse on all measures of processing speed (Digital Symbol Substitution Test [mean score, 41.2 versus 43.4; \(P = 0.005 \)), Trail Making Test Part A [mean seconds, 45.1 versus 42.2; \(P = 0.035 \)], and Stroop [mean score, 173.9 versus 181.0; \(P = 0.002 \)]) and had smaller brain volumes compared with women with histories of normotensive pregnancies (286 versus 297; \(P = 0.023 \)).

Conclusions—Hypertensive pregnancy disorders are associated with worse performance on tests of processing speed and smaller brain volumes decades later. Population-based studies are needed to provide critical insight as to the contribution of hypertensive pregnancies to risk of cognitive decline and dementia. (Circ Cardiovasc Qual Outcomes. 2016;9: S70-S76. DOI: 10.1161/CIRCOUTCOMES.115.002461.)

Key Words: cognition ■ epidemiology ■ hypertension ■ neuroimaging ■ preeclampsia ■ pregnancy

Hypertensive pregnancy disorders are a potential sex-specific risk factor of cognitive impairment and dementia among women. These disorders, which affect ≈8% of all pregnancies, include gestational hypertension, preeclampsia, eclampsia, chronic hypertension, and preeclampsia or eclampsia superimposed on chronic hypertension. Women with histories of hypertensive pregnancy disorders, especially preeclampsia, are at an increased risk of a subsequent diagnosis of hypertension, cardiovascular disease (CVD), and stroke later in life. Several longitudinal studies have established that hypertension, stroke, CVD, and stroke increase the risk of cognitive decline and dementia. Thus, it is possible that women with histories of hypertensive pregnancy disorders also have an increased risk of cognitive decline and dementia. Studies suggest the associations between hypertensive pregnancy disorders and subjective cognitive complaints or brain white-matter lesions on magnetic resonance imaging (MRI). However, these studies had small sample sizes, included few ethnic or racial minorities, and only assessed brain structure and cognitive function 5 to 10 years after the hypertensive pregnancy. The long-term effects of hypertensive pregnancy disorders on brain structure and cognitive function remain unknown. In this study, we examined associations between hypertensive pregnancy disorders, cognitive performance, and brain MRI findings among a large, multiethnic and racial sample of women, mean age of 61 years, enrolled in the Genetic Epidemiology Network of Arteriopathy (GENOA) study, which was a cohort included in the Family Blood Pressure Project.

Methods

Study Design

Our analysis included 1279 women who participated in the Family Blood Pressure Project GENOA study and who completed the pregnancy history questionnaire during the phase 2 study examination (2000–2004).
WHAT IS KNOWN

• Previous studies suggest associations between hypertensive pregnancy disorders and subjective cognitive complaints or brain white-matter lesions on magnetic resonance imaging 5 to 10 years after the hypertensive pregnancy.
• The long-term effects of hypertensive pregnancy disorders on brain structure and cognitive function, assessed using a comprehensive neuropsychological battery, have not been reported.

WHAT THE STUDY ADDS

• Women with histories of hypertensive pregnancy disorders perform more poorly on tests of processing speed decades after the hypertensive pregnancy compared with women with normotensive pregnancies.
• Women with a history of hypertensive pregnancy disorders also had greater brain atrophy decades later.
• The results remained after adjusting for traditional cardiovascular risk factors, suggesting that hypertensive pregnancies are independent predictors of impaired cognition and brain structure.

GENOA is a multicenter study that started in 1995 and followed a well-characterized cohort of sibships from families with histories of hypertension.15 Participants were recruited from families in which at least 2 siblings developed hypertension before the age of 60 years. As part of the ancillary study, Genetics of Microangiopathic Brain Injury (GMBI: 2001–2005), all had cognitive testing and 1075 women had a MRI scan for measuring brain and ventricular volumes and white-matter lesions. The brain MRI and cognitive function testing were completed, on average, about 1 year after the GENOA examination. Non-Hispanic white women were recruited from Rochester, Minnesota (n=569). Non-Hispanic black women were recruited from Jackson, Mississippi (n=710). This study was approved by the Institutional Review Boards at the Mayo Clinic and University of Mississippi Medical Center. All subjects provided written informed consent before participating.

Assessment of Hypertensive Pregnancy

We used a standardized, previously validated questionnaire administered by trained interviewers to determine whether a woman had a history of hypertension in pregnancy.16 Women were asked, “Have you had at least 1 pregnancy lasting more than 6 months?” Women who responded yes were asked how many pregnancies they had and during any of these pregnancies (which lasted >6 months), did a physician ever tell you that you had high blood pressure or hypertension?

Cognitive Testing

A neuropsychological assessment was offered to all participants using a standardized protocol to assess global cognition and domains of memory, language, executive function, and processing speed. Global cognition was assessed by the Mini-Mental State Examination (MMSE; range, 0–30).17 Tests of memory included the Rey Auditory Verbal Learning Test delayed recall (range, 0–15)18 and the Wechsler Adults Intelligence Scale II Incidental Learning Task (range, 0–93).19 Language was assessed using the FAS test, a measure of letter fluency, where participants were given 60 seconds to generate as many words as possible beginning with the letters F, A, and S (60 seconds for each letter), avoiding proper nouns, and the Animal Naming Task, a measure of category (animals) fluency, where participants were given 60 seconds to name as many animals as possible.18 Executive function was assessed by the Trail Making Test (TMT) Part B.20 A greater time to completion (in seconds) indicated worse performance. Processing speed was measured using the Wechsler Adult Intelligence Scale Revised Digit Symbol Substitution Task and TMT Part A.20 A greater time to completion (in seconds) on the TMT Part A indicated worse performance. We also included the Stroop test, a measure of both processing speed and cognitive flexibility.21 The Stroop test involved 3 trials. In the word trial, the subject read words of color names printed in black ink. In the color trial, the subject identified colors. Finally, in the color-word response inhibition trial, the subject named the color in which a word was presented while ignoring the printed word. Scoring for each trial type is based on the number of correct responses in 45 s. The sum of the 3 trials was used as the final score (range, 0–93). Higher scores indicate better cognitive performance.

MRI Assessment

All MRI scans were performed on identically equipped Signa 1.5-T MRI scanners (GE Healthcare), and images were centrally processed at the Mayo Clinic. Symmetrical head positioning with respect to orthogonal axes was verified by a series of short scout scans. Total intracranial volume (head size) was measured from T1-weighted spin-echo sagittal images, each set consisting of 32 contiguous 5-mm thick slices with no interslice gap, field of view=24 cm, and matrix=256×192, obtained with the following sequence: scan time=2.5 minutes, echo time=14 ms, repetition time=2, and replication time=500 ms.22 Total brain and white-matter lesion volumes (cm³) were determined from axial fluid-attenuated inversion recovery images, each set consisting of 48 contiguous 3-mm interleaved slices with no interlice gap, field of view=22 cm, and matrix=256×160, obtained with the following sequence: scan time=9 minutes, echo time=144.8 ms, inversion time=2600 ms, repetition time=11 s, bandwidth=15.6 kHz, and 1 signal average. Interactive imaging processing steps were performed by a trained image analyst who had no knowledge of the subjects’ personal or medical histories or biological relationships. A fully automated algorithm was used to segment each slice of the edited multislice fluid-attenuated inversion recovery sequence into voxels assigned to 1 of the 3 categories: brain, cerebrospinal fluid, or white-matter lesion. The mean absolute error of this method was 1.4% for brain volume and 6.6% for white-matter lesion volume, and the mean test–test coefficient of variation was 0.3% for brain volume and 1.4% for white-matter lesion volume.23 The difference between total intracranial volume and brain volume provided a measure of brain atrophy. White-matter hyperintensities in the corona radiata and periventricular zone, as well as infarcts in the central gray matter, were included in the global white-matter lesion volume measurements. Brain scans with cortical infarctions were excluded from the analyses because of the distortion of the white-matter lesion volume estimates that would be introduced into the automated segmentation algorithm.

Assessment of Covariates

All measurements were performed by trained technicians who followed standardized protocols. Height was measured with the participant standing with her heels together, without shoes, against a vertically mounted ruler. Weight was measured using an electronic balance with participants wearing lightweight clothes. Body mass index was calculated as weight (kg)/height² (m²). Ever smoked was defined as a lifetime history of having smoked 200 cigarettes. Diabetes mellitus was defined as a self-report of a physician diagnosis of diabetes mellitus and use of hypoglycemic medications or a fasting serum glucose concentration of at least 126 mg/dL. Hypertension was defined as a self-reported physician diagnosis of hypertension and prescription antihypertensive medication use or an average systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg. Hyperlipidemia was defined as the use of a lipid-lowering medication or an abnormal lipid measurement (total cholesterol, ≥200 mg/dL; triglycerides, ≥150 mg/dL; or high-density lipoprotein, ≤40 mg/dL). Serum concentrations of total cholesterol, triglycerides, and high-density lipoprotein cholesterol were measured on the same analyzer.

Statistics

Differences in the baseline characteristics of women, by having a history of a hypertensive pregnancy disorder, with cognitive and MRI
data were evaluated using χ² tests for categorical variables (presented as absolute numbers with percentages) and 1-way ANOVA for continuous variables (expressed as mean values with SDs). The associations between having had a history of a hypertensive pregnancy disorder and either cognitive function or MRI characteristics were estimated using linear models fit with generalized estimating equations, accounting for sibship clustering. All variables in Table 1 were initially examined as potential confounders. Only covariates that differed between women with and without histories of hypertensive pregnancies (or nulliparous women) were included in the generalized estimating equation models. Model 1 was adjusted for age, race, education, body mass index, smoking, hypertension, and family history of hypertension. Model 2 was adjusted for all the covariates from model 1 and, in addition, with hypertension duration, which was assessed for women with current hypertension. The duration of hypertension was unknown for 81 of 898 (9%) hypertensive women; for these women, the duration of hypertension was not imputed. Values for the cognitive testing data that were not normally distributed were log transformed. The P values corresponding to the log transformed data are presented in tables, whereas the descriptive values (mean±95% confidence intervals for mean) are converted to antilog for easier interpretation of the cognitive test scores. The total volume of brain injury was assessed as a MRI composite measure of brain atrophy and white-matter lesion volume. Because the MRI measures and the cognitive domain scores used different measurement units, the relationship between the 2 was assessed in the form of z scores (ie, standardized cognitive domains and total standardized volume of brain injury). Composite measures for memory, processing speed, and language domains were constructed from tests constituting each domain to reduce measurement error and floor and ceiling effects of individual tests. A standardized z score was created for each individual measure, and z scores were averaged within a domain to create the composite. Standardized outcomes and predictors were then modeled to facilitate comparison between models, where a β coefficient of −0.5 is interpreted as a 0.5-SD decrease in cognitive score outcome being associated with 1-SD increase in total brain injury. Sensitivity analyses were performed by excluding 5 women with clinical diagnoses of dementia and adjusting for recent self-reported symptoms of depression and nervousness. A second sensitivity analysis was performed by including nulliparous women in all models. We also adjusted models for abnormal estimated glomerular filtration rate (<60 mL/min per 1.73 m²). As these additional analyses did not alter the results, they are not reported. Statistical analysis was performed using SPSS (SPSS for Windows, version 21.0; SPSS, Chicago, IL). P<0.05 was considered to be statistically significant.

Results

Participant Characteristics

Among the 1279 women with cognitive data, 208 (16.3%) had histories of hypertensive pregnancy disorders. The frequency of hypertensive pregnancies (n=176; 16.4%) was similar among the 1075 women who had undergone a MRI. There were no differences in demographic, medical, or cognitive characteristics between women who did and did not have a brain MRI scan. Compared with women with previous normotensive pregnancies, women with previous hypertensive pregnancies were younger, had higher body mass indexes, were more frequently hypertensive, and were more frequently reported a parental history of hypertension (Table 1). Compared with nulliparous women, women with previous hypertensive pregnancies were more frequently non-Hispanic black, had a lower education, had higher body mass indexes, were more frequently hypertensive, and were more frequently reported a parental history of hypertension. There were no differences between women with and without (normotensive or

Table 1. Participant Characteristics by History of Hypertensive Pregnancy Disorders Among Women With Cognitive and MRI Data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Nulliparous Pregnancy (n=112)</th>
<th>Normotensive Pregnancy (n=959)</th>
<th>Hypertensive Pregnancy (n=208)</th>
<th>Nulliparous Pregnancy (n=103)</th>
<th>Normotensive Pregnancy (n=796)</th>
<th>Hypertensive Pregnancy (n=176)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean±SD</td>
<td>57±11</td>
<td>61±9</td>
<td>58±10*</td>
<td>57±11</td>
<td>61±9</td>
<td>58±10*</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>68 (61)</td>
<td>412 (43)</td>
<td>89 (43)</td>
<td>65 (63)</td>
<td>378 (47)</td>
<td>84 (48)</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>44 (39)</td>
<td>547 (57)</td>
<td>119 (57)</td>
<td>38 (37)</td>
<td>418 (53)</td>
<td>92 (52)</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than high school (≤8 y)</td>
<td>2 (2)</td>
<td>54 (6)</td>
<td>16 (8)</td>
<td>2 (2)</td>
<td>40 (5)</td>
<td>13 (7)</td>
</tr>
<tr>
<td>Partial high school (9–11 y)</td>
<td>4 (3)</td>
<td>107 (11)</td>
<td>26 (12)</td>
<td>3 (3)</td>
<td>80 (10)</td>
<td>17 (10)</td>
</tr>
<tr>
<td>High-school graduate/GED (12 y)</td>
<td>29 (26)</td>
<td>366 (38)</td>
<td>68 (33)</td>
<td>25 (24)</td>
<td>310 (39)</td>
<td>59 (34)</td>
</tr>
<tr>
<td>Post high school (>12 y)</td>
<td>77 (69)</td>
<td>432 (45)</td>
<td>98 (47)</td>
<td>73 (71)</td>
<td>366 (46)</td>
<td>87 (49)</td>
</tr>
<tr>
<td>Body mass index, kg/m², mean±SD</td>
<td>32±7</td>
<td>31±6</td>
<td>34±7*,†</td>
<td>32±7</td>
<td>31±6</td>
<td>33±6*,†</td>
</tr>
<tr>
<td>Ever smoked, n (%)</td>
<td>38 (34)</td>
<td>340 (36)</td>
<td>57 (27)</td>
<td>38 (34)</td>
<td>291 (37)</td>
<td>49 (28)*</td>
</tr>
<tr>
<td>eGFR<60 mL/min per 1.73 m², n (%)</td>
<td>5 (4.5)</td>
<td>62 (6.5)</td>
<td>16 (7.7)</td>
<td>4 (3.9)</td>
<td>48 (6.1)</td>
<td>13 (7.4)</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>20 (18)</td>
<td>197 (21)</td>
<td>46 (22)</td>
<td>20 (18)</td>
<td>151 (19)</td>
<td>37 (21)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>85 (76)</td>
<td>713 (74)</td>
<td>185 (89)*,†</td>
<td>85 (76)</td>
<td>578 (73)</td>
<td>155 (88)*,†</td>
</tr>
<tr>
<td>Duration of hypertension, y, mean±SD</td>
<td>17±13</td>
<td>15±11</td>
<td>22±13*,†</td>
<td>18±13</td>
<td>15±10</td>
<td>22±13 *,†</td>
</tr>
<tr>
<td>Dyslipidemia, n (%)</td>
<td>55 (49)</td>
<td>466 (49)</td>
<td>89 (43)</td>
<td>55 (49)</td>
<td>378 (48)</td>
<td>78 (44)</td>
</tr>
<tr>
<td>Family history of hypertension, n (%)</td>
<td>88 (79)</td>
<td>747 (78)</td>
<td>180 (87)*</td>
<td>88 (79)</td>
<td>618 (78)</td>
<td>155 (88)*,†</td>
</tr>
<tr>
<td>Family history of CHD, n (%)</td>
<td>49 (44)</td>
<td>401 (42)</td>
<td>102 (49)</td>
<td>49 (44)</td>
<td>338 (43)</td>
<td>89 (51)</td>
</tr>
</tbody>
</table>

CHD indicates coronary heart disease; eGFR, estimated glomerular filtration rate; GED, general educational development; and MRI, magnetic resonance imaging.
*Significant difference (P<0.05) compared with women with normotensive pregnancies.
†Significant difference (P<0.05) compared with nulliparous women.
‡Duration of hypertension was shown for women with current hypertension.
nulliparous) a history of hypertensive pregnancy with respect to diabetes mellitus, dyslipidemia, or a family history of coronary heart disease.

History of Hypertensive Pregnancy Disorders and Cognitive Function

In multivariable analyses, women with histories of hypertensive pregnancy disorders performed worse on all 3 measures of processing speed: Digital Symbol Substitution Test (mean score, 41.2 versus 43.4; \(P=0.005\)), TMT Part A (mean seconds, 45.1 versus 42.2; \(P=0.035\)), and the Stroop (mean score, 173.9 versus 181.0; \(P=0.002\); Table 2, model 1). There were no associations between having a history of a hypertensive pregnancy disorder and cognitive performance in memory, language, or executive function. In addition, adjusting for hypertension duration in the models did not alter the results except for TMT Part A, where differences between the groups were attenuated (mean seconds, 43.7 versus 42.1; \(P=0.238\); Table 2, model 2). The results were not different when nulliparous women were included or when the models were adjusted for abnormal estimated glomerular filtration rate (data not shown).

History of Hypertensive Pregnancy Disorders and Brain MRI Measures

Women with histories of hypertensive pregnancy disorders had smaller brain volumes compared with women with histories of normotensive pregnancies (286 versus 297; \(P=0.023\)) in multivariable models (Table 3, model 1). Women with histories of hypertensive pregnancy disorders also had greater mean white-matter lesion volumes (8.9 versus 8.1; \(P=0.182\)), but this difference did not reach statistical significance. Inclusion of hypertension duration in the models did not alter the results (Table 3, model 2). Results did not differ when nulliparous women were included or when the models were adjusted for abnormal estimated glomerular filtration rate (data not shown).

Relationship Between Cognitive Function and Brain MRI Measures

Finally, we examined the association between domain-specific cognitive function and the total standardized volume of brain injury, a composite measure of brain atrophy and white-matter lesion volume (Table 4). Among all domains, better cognitive functioning was associated with a lower volume of brain injury. Faster processing speed was most significantly associated with a lower volume of brain injury among women with \((\beta=-0.36; P=0.004)\) and without \((\beta=-0.16; P=0.005)\) a history of a hypertensive pregnancy disorder. Better performance on tests of memory \((\beta=-0.08; P=0.034)\) and executive function \((\beta=-0.12; P=0.019)\) were also associated with a lower volume of brain injury among women with histories of normotensive pregnancies. Better performance on tests of language \((\beta=-0.19; P=0.019)\) was associated with a lower volume of brain injury among women with histories of hypertensive pregnancies (Table 4, model 1). Inclusion of hypertension duration in the models did not alter the results in women with histories of a hypertensive pregnancy disorder, but the results were attenuated for tests of memory in women who were normotensive while pregnant \((\beta=-0.06; P=0.082; \text{Table 4, model 2})\). The results did not differ when nulliparous women were included in the normotensive pregnancy group or when the models were adjusted for abnormal estimated glomerular filtration rate (data not shown).

Table 2. Cognitive Performance by a History of Normotensive or Hypertensive Pregnancy Disorders

<table>
<thead>
<tr>
<th>Cognitive Testing</th>
<th>Normotensive Pregnancy (n=959)</th>
<th>Hypertensive Pregnancy (n=208)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Global cognition</td>
<td>27.9 (27.8–28.0)</td>
<td>27.9 (27.8–28.1)</td>
</tr>
<tr>
<td>Mini-Mental State Examination</td>
<td>43.4 (42.8–44.0)</td>
<td>43.6 (42.9–44.3)</td>
</tr>
<tr>
<td>Memory</td>
<td>8.4 (8.2–8.6)</td>
<td>8.4 (8.2–8.6)</td>
</tr>
<tr>
<td>Rey Auditory Verbal Learning Test</td>
<td>5.0 (4.8–5.1)</td>
<td>5.0 (4.8–5.1)</td>
</tr>
<tr>
<td>Processing speed</td>
<td>181.0 (179.2–182.9)</td>
<td>180.9 (178.9–182.8)</td>
</tr>
<tr>
<td>Digital Symbol Substitution Test</td>
<td>31.5 (30.8–32.2)</td>
<td>31.3 (30.5–32.1)</td>
</tr>
<tr>
<td>Trail Making Test Part A, s†</td>
<td>16.7 (16.5–17.0)</td>
<td>16.8 (16.5–17.0)</td>
</tr>
<tr>
<td>Stroop: processing speed and executive function</td>
<td>116.3 (113.0–119.7)</td>
<td>115.9 (112.5–119.5)</td>
</tr>
</tbody>
</table>

Values shown are mean and 95% confidence intervals for the mean. Model 1: adjusted for age, race, education, body mass index, smoking, hypertension, family history of hypertension, and accounted for familial clustering and model 2: adjusted for all variables from model 1 plus duration of hypertension.

*Significant difference \((P<0.05)\) compared with women with normotensive pregnancies.

†For all tests, except the Trail Making Test, Parts A and B, a higher score indicates better performance. For Trail Making Test, Parts A and B, \(P\) values were initially derived from natural log-transformed test values. Inverse logarithm values are presented in this table to better display performance on the cognitive test.
Discussion

Our results indicate that women with histories of a hypertensive pregnancy disorder, compared with those who were normotensive while pregnant, perform more poorly on tests of processing speed decades after the hypertensive pregnancy. No differences in memory, language, and executive function were observed between the groups. In addition, women with histories of a hypertensive pregnancy disorder had greater brain atrophy and a trend toward a greater degree of white-matter lesion volume. As hypertensive pregnancy disorders are increasingly recognized as a CVD risk factor, cognitive decline and brain changes may be mediated solely by subsequent diagnoses of hypertension or CVD. Alternatively, hypertensive pregnancy disorders may represent a risk factor that is independent of the effects of CVD. In this study, after adjusting for CVD, hypertension, hypertension duration, and a family history of hypertension, the association between having a history of a hypertensive pregnancy disorder and both processing speed and brain atrophy remained significant. These results suggest that hypertensive pregnancies are independent predictors of impaired brain structure and cognitive function and may identify those women at greater risk of future dementia.

Our previous study in the Family Blood Pressure Project cohort demonstrated that, compared with women who had normotensive pregnancies, women who had hypertensive pregnancies were more likely to develop hypertension and stroke, even after controlling for traditional risk factors.2 Our subsequent studies, using either all Family Blood Pressure Project cohorts as a whole or the component network cohorts individually, also showed that women with histories of a hypertensive pregnancy disorder were at greater risk of peripheral artery disease,24 left ventricular hypertrophy,25 and metabolic abnormalities that increase the risk of CVD, including elevated C-reactive protein26 and homocysteine.

Taken together, these findings identify hypertensive pregnancy disorders as an additional sex-specific CVD risk factor.

Although CVD is a well-recognized risk factor of cognitive decline and dementia, there is a dearth of information as to the effects of hypertensive pregnancies on brain structure and cognitive function and whether such an association might be solely mediated by CVD. One pilot study compared cognitive performance between 10 severely preeclamptic and 10 normotensive pregnant women 3 to 8 months postpartum. The severely preeclamptic women had significantly lower scores on a test of auditory-verbal memory but not on the tests of attention/concentration or executive functioning.23 Two additional studies examining the effects of hypertensive pregnancies on cognition, 6 to 8 years after the affected pregnancy, when the average age of the women was 30 to 40 years, found that women with preeclampsia and eclampsia (30–50 women per group) reported worse subjective cognitive function.9,10 However, a comprehensive neuropsychological battery was not conducted. In this study, we systematically examined

<table>
<thead>
<tr>
<th>MRI Characteristics</th>
<th>Normotensive Pregnancy (n=796)</th>
<th>Hypertensive Pregnancy (n=176)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonadjusted Model 1 Model 2</td>
<td>Nonadjusted Model 1 Model 2</td>
</tr>
<tr>
<td>Total intracranial volume*</td>
<td>1355 (1347–1363) N/A</td>
<td>1360 (1344–1376) N/A</td>
</tr>
<tr>
<td>Ventricle volume</td>
<td>21.0 (20.2–21.9)</td>
<td>20.7 (20.0–21.5)</td>
</tr>
<tr>
<td>Brain atrophy</td>
<td>287 (282–291)</td>
<td>293 (284–301)</td>
</tr>
<tr>
<td>White-matter lesion volume</td>
<td>8.3 (7.8–8.8)</td>
<td>8.0 (6.8–9.3)</td>
</tr>
</tbody>
</table>

Values shown are mean with 95% confidence interval for mean. Model 1: adjusted for age, body mass index, smoking, hypertension, family history of hypertension, total intracranial volume, and accounted for familial clustering and model 2: adjusted for all variables from model 1 plus duration of hypertension. MRI indicates magnetic resonance imaging.

*The model for total intracranial volume is univariate; N/A indicates not applicable.

†Significant difference (P<0.05) compared with women with normotensive pregnancies.
the association between having a history of a hypertensive pregnancy and domain-specific cognitive functioning among a large group of 1279 women of different racial and ethnic backgrounds. We found that women with histories of a hypertensive pregnancy had poorer cognitive performance, especially in processing speed, decades later, when the average age of the women was ≈60 years. Although the significant associations had modest effect sizes, on a population scale even a modest shift in the distribution of cognitive scores can result in an increased public health burden from cognitive impairment (ie, the lower the scores at a given age, the sooner one crosses the threshold for impairment as function declines with age). Importantly, adjusting for CVD and known CVD risk factors did not attenuate the results, suggesting that hypertensive pregnancy disorders may be independent risk factors of cognitive decline.

Some studies have suggested associations between having a history of a hypertensive pregnancy and brain white-matter lesions on MRI. For example, previous neuroimaging studies in women with severe forms of preeclampsia demonstrated significant white-matter lesions. Neuroradiological abnormalities, in the form of vasogenic edema at the time of delivery, persisted in a few patients ≤8 weeks postpartum, presumably caused by gliosis in response to infarction. Subsequent studies suggested greater white-matter lesion burden 5 to 7 years after the affected pregnancies. Our study suggests even longer term adverse effects of hypertensive pregnancies such that these affected women have greater brain atrophy decades after their pregnancies compared with women who had normotensive pregnancies. There was also a trend for white-matter lesions. Furthermore, our results indicate that cognitive impairment occurs in the setting of structural brain changes for women with a mean age of 61 years. Thus, women with histories of hypertensive pregnancy disorders may need to be closely monitored for signs and symptoms of cognitive decline, and their modifiable risk factors need to be treated adequately.

Limitations of this study warrant consideration. First, all hypertensive pregnancy disorders were pooled for this analysis, as the study was too small to examine the effects of preeclampsia alone. Future studies are needed to determine whether women with histories of preeclamptic or eclamptic pregnancies are at even greater risk of adverse structural and functional brain changes compared with women with histories of gestational hypertension. Second, brain scans with cortical infarctions were excluded from the analyses because of distortion of the volume estimates. This would potentially bias the results toward the null such that the effects of a hypertensive pregnancy disorder on brain structure could be even more pronounced. Third, GENOA enrolled sibships with a familial prepossession of the volume estimates. This would potentially bias the associations had modest effect sizes, on a population scale even a modest shift in the distribution of cognitive scores can result in an increased public health burden from cognitive impairment (ie, the lower the scores at a given age, the sooner one crosses the threshold for impairment as function declines with age). Importantly, adjusting for CVD and known CVD risk factors did not attenuate the results, suggesting that hypertensive pregnancy disorders may be independent risk factors of cognitive decline.

Some studies have suggested associations between having a history of a hypertensive pregnancy and brain white-matter lesions on MRI. For example, previous neuroimaging studies in women with severe forms of preeclampsia demonstrated significant white-matter lesions. Neuroradiological abnormalities, in the form of vasogenic edema at the time of delivery, persisted in a few patients ≤8 weeks postpartum, presumably caused by gliosis in response to infarction. Subsequent studies suggested greater white-matter lesion burden 5 to 7 years after the affected pregnancies. Our study suggests even longer term adverse effects of hypertensive pregnancies such that these affected women have greater brain atrophy decades after their pregnancies compared with women who had normotensive pregnancies. There was also a trend for white-matter lesions. Furthermore, our results indicate that cognitive impairment occurs in the setting of structural brain changes for women with a mean age of 61 years. Thus, women with histories of hypertensive pregnancy disorders may need to be closely monitored for signs and symptoms of cognitive decline, and their modifiable risk factors need to be treated adequately.

Limitations of this study warrant consideration. First, all hypertensive pregnancy disorders were pooled for this analysis, as the study was too small to examine the effects of preeclampsia alone. Future studies are needed to determine whether women with histories of preeclamptic or eclamptic pregnancies are at even greater risk of adverse structural and functional brain changes compared with women with histories of gestational hypertension. Second, brain scans with cortical infarctions were excluded from the analyses because of distortion of the volume estimates. This would potentially bias the results toward the null such that the effects of a hypertensive pregnancy disorder on brain structure could be even more pronounced. Third, GENOA enrolled sibships with a familial pre-

References

apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study.
11. Zeeman GG, Fleckenstein JL, Twickler DM, Cunningham FG. Cerebral infarction in eclampsia.
17. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician.
Impaired Cognition and Brain Atrophy Decades After Hypertensive Pregnancy Disorders

Circ Cardiovasc Qual Outcomes. 2016;9:S70-S76
doi: 10.1161/CIRCOUTCOMES.115.002461
Circulation: Cardiovascular Quality and Outcomes is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7705. Online ISSN: 1941-7713

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/9/2_suppl_1/S70

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/