Ideal Cardiovascular Health and Risk of Frailty in Older Adults

Auxiliadora Graciani, MD; Esther García-Esquinas, MD; Esther López-García, PhD; José R. Banegas, MD; Fernando Rodríguez-Artalejo, MD

Background—The major cardiovascular risk factors and existing cardiovascular disease have been linked to increased risk of the frailty syndrome. However, the association between ideal cardiovascular health and the risk of frailty in older adults is uncertain.

Methods and Results—Prospective cohort study of 1745 individuals (≥60 years and free of cardiovascular disease) recruited during 2008 to 2010. Cardiovascular health was defined as having 7 ideal metrics: never smoking, physically active, healthy diet, body mass index <25 kg/m², untreated serum cholesterol <200 mg/dL, untreated blood pressure <140/90 mm Hg, and untreated fasting serum glucose <100 mg/dL. Participants were followed-up through 2012 to assess incident frailty, defined as ≥3 of the 5 Fried criteria. Statistical analyses were performed with Cox regression and adjusted for main confounders. During a mean follow-up of 3.5 years, 117 cases of incident frailty were identified. Compared with meeting 0 to 1 ideal metrics, the hazard ratio (95% confidence interval) of frailty was 0.51 (0.30–0.84) for 2 metrics and 0.630 (0.39–0.99) for ≥3 metrics. Results were similar after excluding incident cases of cardiovascular disease. The number of ideal metrics showed a tendency to a reduced risk of all frailty criteria. The cardiovascular metrics associated with the greatest reduction of frailty risk were being physically active and ideal body mass index.

Conclusions—Reaching old age in ideal cardiovascular health is associated with a reduced risk of frailty. This highlights the importance of a life-course approach for frailty prevention. (Circ Cardiovasc Qual Outcomes. 2016;9:239-245. DOI: 10.1161/CIRCOUTCOMES.115.002294.)

Key Words: cardiovascular diseases ■ epidemiology ■ frail elderly ■ lifestyle ■ risk factors ■ Spain

Frailty is a geriatric syndrome characterized by increased vulnerability to even minor stressors, which leads to higher risk of hospitalization, disability, institutionalization, and death.1-3 Frailty has a complex pathogenesis, but it seems to result from a decline across multiple biological systems because of age-associated physiological impairment or existing disease1-3.

Editorial, see p 194

There is evidence of a strong link between cardiovascular disease (CVD) and frailty in older adults. Specifically, lifestyle-related cardiovascular risk factors, including smoking,4 poor diet,5 physical inactivity,6 or obesity7 increase the risk of frailty. Biological risk factors, such as hypertension,8 dyslipidemia,9 or diabetes mellitus8 are also associated with higher frequency of frailty. Moreover, a higher score on the Framingham or SCORE risk equations has been shown to identify future frailty.10,11 Finally, frailty is more frequent among individuals with endothelial dysfunction or existing CVD.12,13

CVD and its risk factors often develop early in life. Moreover, once adverse levels of risk factors are present (eg, obesity, hypertension), they are difficult to reverse, and substantial elevations in long-term and lifetime risks for CVD are largely unavoidable.14 Therefore, effective CVD prevention should adopt a life-course approach by avoiding the development of cardiovascular risk factors in the first place (primordial prevention).15 The American Heart Association (AHA) has charted a new strategy for CVD prevention by focusing on improving cardiovascular health through primordial prevention during the life-course.14 According to the AHA, cardiovascular health comprises 7 metrics: 4 ideal health behaviors (nonsmoking, being physically active, eating a healthy diet, and normal body mass index [BMI]) together with 3 ideal health factors (untreated normal total cholesterol, blood pressure [BP], and fasting blood glucose).14 Recent studies have shown that meeting a higher number of ideal cardiovascular health metrics predicts a lower risk of death from all causes and from diseases of the circulatory system.16-18

To our knowledge, this is the first study to examine the association between ideal cardiovascular health and the risk of frailty in older adults. The progressive ageing of the world population will probably increase the frequency of frailty and...
WHAT IS KNOWN

• Ideal cardiovascular health predicts a lower risk of death from all causes and from diseases of the circulatory system.

• In older adults, the major cardiovascular risk factors and existing cardiovascular disease have also been linked to a higher risk of developing frailty, but the association between ideal cardiovascular health and frailty is unknown.

WHAT THE STUDY ADDS

• Among older adults who were followed for a duration of 3.5 years, the number of ideal cardiovascular health metrics was inversely associated with the risk of incident frailty. The metrics associated with the greatest reduction of frailty risk were being physically active and ideal body mass index.

• Reaching old age in ideal cardiovascular health is associated with a reduced risk of frailty, supporting further investigation to determine if strategies that maintain cardiovascular health over the life course prevent frailty.

its severe complications; thus, this work is important because it might serve to establish whether primordial CVD prevention could not only reduce CVD incidence and mortality, but also palliate some of the undesired consequences of ageing.

Methods

Study Design and Participants

Data were taken from a cohort of 2614 community-dwelling individuals aged ≥60 years, whose methods have been reported elsewhere. The study participants were selected by stratified cluster sampling of the noninstitutionalized adult population of Spain. The sample was first stratified by province and size of municipality, then clusters were selected randomly in 2 stages (municipalities and census sections), and finally, the households within each section were selected by random telephone dialing. Subjects in the households were selected proportionally to the age and sex distribution of the population of Spain. Baseline information was obtained during 2008 to 2010 and included data on cardiovascular health, frailty, and potential confounders. Participants were followed-up to 2012. We excluded 145 subjects who were frail at baseline, 95 subjects who died during follow-up, and 289 subjects without complete data on frailty in 2012. When comparing the baseline characteristics between the 2614 individuals comprising the entire cohort and the remaining 2085 subjects, the latter had slightly less morbidity.

Study participants provided informed written consent. The study was approved by the Clinical Research Ethics Committee of the La Paz University Hospital in Madrid.

Study Variables

Data were collected by personnel trained and certified in the study procedures. At baseline and at follow-up, they conducted a phone interview to collect data on health status, lifestyle, and morbidity, as well as a home visit to obtain biological samples, to perform a physical examination and to record habitual diet.

At baseline, study participants reported their age, sex, level of education, and smoking status. To assess physical activity, we applied the Spanish-validated questionnaire used in the European Prospective Investigation Into Cancer and Nutrition (EPIC) cohort study, which combines physical activity at work and during leisure time into 4 levels (very active, moderately active, moderately inactive, and inactive). Food and beverage consumption was recorded with a validated computerized diet history, also developed from the one used in the EPIC cohort. In addition, individuals reported if they had any of the following physician-diagnosed diseases: CVD (coronary heart disease, heart failure, stroke), osteoarthritic disease (osteoarthritis, arthritis, hip fracture), cancer at any site, chronic obstructive lung disease, and depression requiring treatment. Limitations in instrumental activities of daily living (IADL) were assessed with the Lawton–Brody test. Weight and height were measured twice in each subject under standardized conditions, using electronic scales (model Seca 841, precision to 0.1 kg) and portable extendable stadiometers (model Ka We 44 444 Seca). BMI was calculated as weight in kilogram divided by squared height in meters. BP was measured 5×, using standardized procedures with validated automatic devices (model Omron M6) and cuffs of 3 sizes according to arm circumference. In the analyses, BP was calculated as the mean of at least 3 of the last 5 readings, excluding the first one to reduce the alerting reaction. Individuals also underwent a physical examination, including grip strength and gait speed. Finally, study participants reported their current use of medication, which was checked against drug packages by the study personnel at the participants’ homes.

At baseline, each study participant provided 12-hour fasting blood samples. Total cholesterol and glucose were measured by standard methods on the ADVIA 2400 Chemistry System, Siemens.

Cardiovascular Health

In accordance with the AHA, cardiovascular health was defined based on 7 ideal health metrics: never smoking, being physically active, eating a healthy diet, BMI <25 kg/m², untreated serum cholesterol <200 mg/dL, untreated systolic/diastolic BP <140/90 mm Hg, and untreated fasting serum glucose <100 mg/dL.

The AHA definition of ideal smoking status includes former smokers who have not smoked for 12 months or longer. Because time since smoking cessation was not assessed in our study, we used only never smoking as the ideal category for smoking status. Ideal physical activity was defined as being very active or moderately active. A healthy diet was defined as meeting at least 4 of the following 5 goals: 24.5 cups/d of fruits and vegetables; ≥2 (3.5 oz) servings/week of fish; ≥1 g of fiber per 10 g of carbohydrate; ≤1500 mg/d of sodium; and ≤450 kcal (36 oz) per week of sugar-sweetened beverages. Finally, although the AHA considers ideal BP to be <120/80 mm Hg, this category is infrequent in older adults from Western countries because systolic BP usually increases with age; thus, for the purpose of this work, the ideal category was defined as untreated BP <140/90 mm Hg.

In some analyses, we also considered intermediate and poor health metrics. For smoking, they were, respectively, former smoking and current smoking. The corresponding metrics for BMI were 25 to 29.9 and ≥30 kg/m², whereas for physical activity, they were moderately inactive and inactive. Intermediate and poor diets were defined as meeting 2 to 3 and 0 to 1 of the above dietary goals, respectively. As regards biological factors, the intermediate and poor metrics for total cholesterol were, respectively, 200 to 239 mg/dL or treated and ≥240 mg/dL. The corresponding values for BP were treated <140/90 and ≥140/90 mm Hg, whereas for fasting serum glucose, they were 100 to 125 mg/dL or treated and ≥126 mg/dL.

Frailty

We used the operational definition of frailty developed by Fried et al in the Cardiovascular Health Study. Specifically, frailty was defined as having at least 3 of the following 5 criteria: (1) exhaustion, based on a response of ≥2 to 4 days a week to any of the following questions from the Center for Epidemiological Studies Depression Scale: “I felt that anything I did was a big effort” or “I felt that I could not keep on doing things”; (2) low physical activity, defined as walking ≤2.5 h/week in men and ≤2 h/week in women; (3) slow walking speed,
defined as the lowest quintile in our study sample for the 3-m walking speed test, adjusted for sex and height; (4) weight loss, defined as involuntary loss of ≥4.5 kg in the preceding year; and (5) weakness, defined as the lowest quintile in the Cardiovascular Health Study of maximum strength on the dominant hand adjusted for sex and BMI. Strength was measured with a Jamar dynamometer, and we selected the highest value in 2 consecutive measures.

Statistical Analysis

Among the 2085 study participants with information on frailty in 2012, we excluded 96 with reported history of myocardial infarction, stroke, or congestive heart failure at baseline and 244 who lacked data either on cardiovascular health metrics or on other study variables. Therefore, the analyses were conducted on 1745 individuals.

The association between cardiovascular health at baseline and subsequent risk of frailty was summarized with hazard ratios (HR) and their 95% confidence interval (CI), obtained from Cox regression with age as the time scale and individual follow-up starting times (age at baseline examination) treated as staggered entries. Because of limitations in the number of frailty cases observed, cardiovascular health was classified into 3 categories: 0 to 1 ideal metrics (reference), 2 metrics, and ≥3 metrics. Cox models were adjusted for sex, age, and education (model 1) or additionally for alcohol intake, morbidity, limitation in IADL, and the number of frailty criteria at baseline (model 2). In addition, to better characterize the dose–response association between cardiovascular health and frailty, we also built a cardiovascular metric score, where we assigned 0 to a poor metric, 1 to an intermediate metric, and 2 to an ideal metric.

The score was calculated by summing values for each of the 7 metrics (possible range 0–14). To obtain a fairly homogeneous distribution of frailty, we defined the following categories of this score: 0 to 5, 6, 7, 8, and >8.

Several sensitivity analyses were performed to check that the main results were robust. First, because frailty may overlap with disability, the analyses were replicated after excluding the 182 individuals with baseline limitations in IADL. Second, given that optimum cardiovascular health has been associated with lower risk of depression, which in turn is a risk factor for frailty, the analyses were repeated after excluding 122 subjects diagnosed at baseline with depression requiring drug treatment. Third, given that apparent optimum weight at baseline may result from weight loss derived from subclinical disease, the analyses were rerun with frailty defined as having 2 out of the 4 remaining Fried criteria, excluding the weight loss criterion. Fourth, to rule out that the study association was driven by low physical activity (which is both a CVD metric and a frailty criterion), we conducted 2 analysis: one with frailty defined as having 2 out of 4 Fried criteria excluding the physical activity criterion, and another analysis with exclusion of the 96 subjects having the low activity criterion at baseline. Finally, to assess if the association between cardiovascular health and frailty was mediated by incident CVD, the analyses were repeated after excluding 111 individuals diagnosed with CVD or atrial fibrillation during follow-up.

Similar analyses were conducted to assess the association of optimum cardiovascular health with risk of each frailty criterion. We also investigated the link between each ideal cardiovascular metric and the risk of frailty; this analysis was further adjusted for all cardiovascular metrics.

To test if the association between cardiovascular health and risk of frailty varied with sex, we ran analyses with interaction terms defined as the product of cardiovascular health categories by sex. Models with and without interaction terms were then compared with likelihood ratio tests based on the partial likelihood. Because no significant sex interactions were found, results are presented for the total study sample. We assessed the assumption of proportionality of hazards both graphically and by testing the significance of interaction terms for the cardiovascular metrics and the time variable. No evidence was found of departure from the proportional hazards assumption (P>0.1).

Table 1. Characteristics of Study Participants According to the Number of Ideal Cardiovascular Health Metrics at Baseline

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total, N=1745</th>
<th>0–1 (n=437)</th>
<th>2 (n=512)</th>
<th>≥3 (n=796)</th>
<th>P Value for Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women, %</td>
<td>51.5</td>
<td>29.5</td>
<td>49.6</td>
<td>64.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Age, y (mean±SD)</td>
<td>68.5±6.3</td>
<td>68.9±6.3</td>
<td>68.5±6.7</td>
<td>68.2±6.0</td>
<td>0.164</td>
</tr>
<tr>
<td>Primary or less education, %</td>
<td>52.8</td>
<td>51.9</td>
<td>54.7</td>
<td>52.1</td>
<td>0.921</td>
</tr>
<tr>
<td>Alcohol intake, g/d, mean±SD</td>
<td>10.8±18.0</td>
<td>17.2±23.4</td>
<td>11.5±19.4</td>
<td>6.8±11.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Morbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer at any site, %</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.8</td>
<td>0.812</td>
</tr>
<tr>
<td>Chronic obstructive lung disease, %</td>
<td>7.2</td>
<td>6.2</td>
<td>9.2</td>
<td>6.5</td>
<td>0.917</td>
</tr>
<tr>
<td>Osteoarthritis,* %</td>
<td>46.4</td>
<td>40.0</td>
<td>47.5</td>
<td>49.1</td>
<td>0.004</td>
</tr>
<tr>
<td>Depression needing treatment, %</td>
<td>7.0</td>
<td>3.4</td>
<td>7.2</td>
<td>8.8</td>
<td>0.001</td>
</tr>
<tr>
<td>Limitation in IADL, %</td>
<td>9.0</td>
<td>8.6</td>
<td>10.3</td>
<td>8.4</td>
<td>0.755</td>
</tr>
<tr>
<td>Ideal cardiovascular health metrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking (never), %</td>
<td>57.9</td>
<td>25.4</td>
<td>53.1</td>
<td>78.8</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI (<25 kg/m²), %</td>
<td>19.4</td>
<td>2.1</td>
<td>11.1</td>
<td>34.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Physical activity (at goal), %</td>
<td>22.5</td>
<td>4.8</td>
<td>13.1</td>
<td>38.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Healthy diet, %</td>
<td>21.4</td>
<td>4.6</td>
<td>13.9</td>
<td>35.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Total cholesterol (<200 mg/dL, untreated), %</td>
<td>29.5</td>
<td>12.8</td>
<td>25.2</td>
<td>41.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood pressure (<140/90 mmHg, untreated), %</td>
<td>35.2</td>
<td>8.7</td>
<td>25.0</td>
<td>56.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Serum glucose, (<100 mg/dL, untreated), %</td>
<td>59.2</td>
<td>20.1</td>
<td>58.6</td>
<td>81.0</td>
<td><0.001</td>
</tr>
</tbody>
</table>

BMI indicates body mass index; IADL, instrumental activities of daily living; and SD, standard deviation.

*Osteoarthritis, arthritis, hip fracture.
Table 2. Association Between the Number of Ideal Cardiovascular Health Metrics or the Cardiovascular Metric Score and the Risk of Frailty

<table>
<thead>
<tr>
<th>Number of ideal health metrics</th>
<th>No. of Frailty Cases</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model 1</td>
</tr>
<tr>
<td>0–1 ideal metrics</td>
<td>40</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>31</td>
<td>0.54 (0.33–0.88)*</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>46</td>
<td>0.55 (0.39–0.99)†</td>
</tr>
<tr>
<td>Cardiovascular metric score‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–5</td>
<td>26</td>
<td>Ref.</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>0.99 (0.57–1.71)</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>0.74 (0.41–1.31)</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>0.57 (0.32–1.00)</td>
</tr>
<tr>
<td>>8</td>
<td>19</td>
<td>0.36 (0.29–0.66)†</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and IADL, instrumental activities of daily living. Model 1, adjusted for sex, age (years), and education (primary school or lower/secondary or high school/university). Model 2, adjusted as in model 1 and additionally for alcohol intake (g/d), cancer (no/yes), obstructive lung disease (no/yes), osteoarticular disease (no/yes), depression requiring treatment (no/yes), IADL limitation (no/yes), and number of frailty criteria (0/1/2) at baseline.

*P<0.05. †P<0.01.
‡Cardiovascular metric score, where we assigned 0 to a poor metric, 1 to an intermediate metric, and 2 to an ideal metric. The score was calculated by summing values for each of the 7 metrics (possible range 0 to 14). To obtain a fairly homogeneous distribution of frailty, we defined the following categories of this score: 0–5, 6, 7, 8, and >8.

Analyses were performed with the SPSS version 21 software (IBM, Armonk, NY).

Results

At baseline, 437 (25%) study participants had 0 to 1 ideal cardiovascular metrics, 512 (29%) had 2 metrics, and 796 (46%) had ≥3 metrics. Compared with individuals with 0 to 1 ideal metrics, those with a higher number of metrics were more frequently women, had lower alcohol intake, and more frequently had osteoarticular disease and depression (Table 1).

During a mean follow-up of 3.5 years, 117 (6.7%) subjects developed incident frailty. After full adjustment for potential confounders, optimum cardiovascular health was associated with lower risk of frailty; specifically, compared with meeting 0 to 1 ideal metrics, the HR (95% CI) of frailty was 0.51 (0.30–0.84) for 2 metrics and 0.63 (0.39–0.99) for ≥3 metrics. When we used the cardiovascular metric score, we observed a clear inverse dose–response for the study association; compared with those with a score 0 to 5, the HR (95% CI) of frailty among those with a score 6, 7, 8, and >8 was, respectively, 1.00 (0.57–1.78), 0.82 (0.45–1.50), 0.75 (0.41–1.36), and 0.42 (0.22–0.80) (Table 2). Results were similar when the analyses were repeated among individuals free of IADL limitation or without depression at baseline, when the weight loss or the low physical criterion was excluded from the definition of frailty, when subjects with low physical activity at baseline were removed, and after excluding those subjects diagnosed with CVD or atrial fibrillation during follow-up (Table in the Data Supplement).

Table 3 shows the association between the number of ideal cardiovascular metrics and the risk of each frailty criterion. Better cardiovascular health tended to be associated with a reduced risk of all frailty criteria, achieving statistical significance for low physical activity. Compared with having 0 to 1 ideal metrics, the HR (95% CI) of physical activity was 0.93 (0.67–1.29) for 2 metrics and 0.73 (0.53–0.99) for ≥3 metrics.

Finally, being physically active, having a BMI <25 kg/m², and having untreated serum glucose <100 mg/dL were associated with lower risk of frailty in the analyses adjusted for age, sex, and educational level. After full adjustment, only physical activity and ideal BMI remained significantly associated with frailty risk. Specifically, the HR (95% CI) of frailty was 0.49 (0.24–0.97) for being active versus inactive and 0.43 (0.22–0.85) for having an ideal weight versus obesity (Table 4).

Table 3. Association Between the Number of Ideal Cardiovascular Health Metrics and the Risk of Each Frailty Criterion

<table>
<thead>
<tr>
<th>Frailty</th>
<th>No. of Frailty Cases</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model 1</td>
</tr>
<tr>
<td>Exhaustion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1 ideal metrics</td>
<td>58</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>66</td>
<td>0.82 (0.57–1.17)</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>91</td>
<td>0.69 (0.49–0.97)*</td>
</tr>
<tr>
<td>Low physical activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1 ideal metrics</td>
<td>75</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>85</td>
<td>0.95 (0.69–1.30)</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>104</td>
<td>0.71 (0.52–0.96)*</td>
</tr>
<tr>
<td>Slow walk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1 ideal metrics</td>
<td>78</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>70</td>
<td>0.86 (0.62–1.19)</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>110</td>
<td>0.91 (0.67–1.23)</td>
</tr>
<tr>
<td>Weight loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1 ideal metrics</td>
<td>37</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>43</td>
<td>0.90 (0.57–1.41)</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>56</td>
<td>0.72 (0.47–1.11)</td>
</tr>
<tr>
<td>Weakness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1 ideal metrics</td>
<td>152</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>186</td>
<td>1.05 (0.84–1.31)</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>246</td>
<td>0.91 (0.74–1.12)</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and IADL, instrumental activities of daily living. Model 1, adjusted for sex, age (years), and education (primary school or lower/secondary or high school/university). Model 2, adjusted as in model 1 and additionally for alcohol intake (g/d), cancer (no/yes), obstructive lung disease (no/yes), osteoarticular disease (no/yes), depression requiring treatment (no/yes), IADL limitation (no/yes), and number of frailty criteria (0/1/2) at baseline. *P<0.05.
Table 4. Association Between Each Cardiovascular Health Metric Categories and the Risk of Frailty

<table>
<thead>
<tr>
<th>Metric Categories</th>
<th>No. of Frailty Cases</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model 1</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor (current)</td>
<td>6</td>
<td>Ref.</td>
</tr>
<tr>
<td>Intermediate (former)</td>
<td>30</td>
<td>1.46 (0.60–3.56)</td>
</tr>
<tr>
<td>Ideal (never)</td>
<td>81</td>
<td>1.00 (0.42–2.41)</td>
</tr>
<tr>
<td>Physical activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor (inactive)</td>
<td>80</td>
<td>Ref.</td>
</tr>
<tr>
<td>Intermediate (moderately inactive)</td>
<td>26</td>
<td>0.49 (0.31–0.77)*</td>
</tr>
<tr>
<td>Ideal (active)</td>
<td>11</td>
<td>0.40 (0.21–0.76)*</td>
</tr>
<tr>
<td>Healthy diet score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor (0–1 components)</td>
<td>26</td>
<td>Ref.</td>
</tr>
<tr>
<td>Intermediate (2–3 components)</td>
<td>67</td>
<td>0.62 (0.39–0.98)†</td>
</tr>
<tr>
<td>Ideal (4–5 components)</td>
<td>24</td>
<td>0.71 (0.40–1.24)</td>
</tr>
<tr>
<td>Body mass index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor (≥30 kg/m²)</td>
<td>59</td>
<td>Ref.</td>
</tr>
<tr>
<td>Intermediate (25–29.9 kg/m²)</td>
<td>46</td>
<td>0.46 (0.31–0.68)*</td>
</tr>
<tr>
<td>Ideal (<25 kg/m²)</td>
<td>12</td>
<td>0.32 (0.17–0.61)*</td>
</tr>
<tr>
<td>Serum total cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor (≥240 mg/DL)</td>
<td>12</td>
<td>Ref.</td>
</tr>
<tr>
<td>Intermediate (200–239 mg/DL or treated)</td>
<td>68</td>
<td>1.62 (0.87–3.01)</td>
</tr>
<tr>
<td>Ideal (<200 mg/DL, untreated)</td>
<td>37</td>
<td>1.80 (0.93–3.50)</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor (≥140/90 mm Hg)</td>
<td>61</td>
<td>Ref.</td>
</tr>
<tr>
<td>Intermediate (≥140/90 mm Hg, treated)</td>
<td>22</td>
<td>1.23 (0.75–2.04)</td>
</tr>
<tr>
<td>Ideal (<140/90 mm Hg, untreated)</td>
<td>34</td>
<td>1.19 (0.77–1.85)</td>
</tr>
<tr>
<td>Serum glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor (≥126 mg/DL)</td>
<td>21</td>
<td>Ref.</td>
</tr>
<tr>
<td>Intermediate (100–125 mg/DL or treated)</td>
<td>43</td>
<td>0.74 (0.44–1.26)</td>
</tr>
<tr>
<td>Ideal (<100 mg/DL, untreated)</td>
<td>53</td>
<td>0.48 (0.29–0.81)*</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and IADL, instrumental activities of daily living. Model 1, adjusted for sex, age (years), and education (primary school or lower/secondary or high school/university). Model 2, adjusted as in model 1 and additionally for alcohol intake (g/d), cancer (no/yes), obstructive lung disease (no/yes), osteoarticular disease (no/yes), depression requiring treatment (no/yes), IADL limitation (no/yes), number of frailty criteria (0/1/2) at baseline, and for the rest of the metrics: smoking status (never smoker/former smoker/current smoker), physical activity (MET h/week), healthy diet score (0–5), body mass index (kg/m²), total cholesterol (mg/DL), blood pressure (mm Hg), fasting glucose (mg/DL), as appropriate.

*P<0.01.
†P<0.05.

Discussion

Our results show that reaching old age in optimum cardiovascular health, as represented by a higher number of ideal cardiovascular metrics, is associated with lower risk of frailty and that the main contributors to this association are physical activity and ideal weight.

There are 2 main reasons why the association between cardiovascular health and reduced risk of frailty was to be expected. First, there is substantial evidence that frailty is more frequent among older adults with existing CVD than in those without.13 And second, several individual CVD risk factors or higher scores in CVD risk equations (eg, Framingham and SCORE) in middle- and old-age have been associated with higher risk of frailty.4–11 Our study extends the knowledge in this field by showing that older adults with ideal cardiovascular health metrics are less likely to develop frailty. We did not obtain information on the potential mechanisms of the study association; however, they could be both clinical (eg, chronic diseases resulting cardiovascular risk factors) and subclinical, such as delayed vascular aging (arterial stiffness, thickness of the carotid intima-media, and reduced blood flow to peripheral tissues) and less frequent subclinical cardiac disease and brain infarcts.10,11 In fact, previous studies have found a cross-sectional association between subclinical CVD and frailty.12,26,27

In our study, a higher number of ideal cardiovascular metrics was associated with a tendency to a lower risk of several frailty criteria, although statistical significance was achieved only for low physical activity. It is noteworthy that low physical activity leads to exhaustion, muscle weakness (sarcopenia), and the other components of the frailty cycle, which in turn further reduce physical activity. Moreover, this finding was consistent with the fact that being physically active as well as keeping a normal weight were the 2 ideal metrics with the strongest relationship with frailty because both of them are good predictors of exhaustion and low physical activity. Also, clinical trials with physical exercise have shown benefits in frailty, physical function, and cardiovascular risk in older adults.28,29

We observed no association between ideal values of biological CVD risk factors and frailty. This is consistent with previous studies using the Framingham and SCORE risk equations, neither of which found that BP, serum cholesterol, or serum glucose were single drivers of the association between CVD risk and incident frailty.10,11 However, the results for serum glucose require additional confirmation in future research. First, because diabetes mellitus is a well-established risk factor for frailty,9 and second, because it is possible that the association of serum glucose with frailty was partly obscured by the effect of physical activity and BMI on serum glucose. In fact, in our study, ideal serum glucose did show an association with lower frailty risk in relatively crude analyses, but it was substantially weakened and lost statistical significance after adjusting for morbidity, IADL limitation, and the rest of the cardiovascular metrics. Moreover, in a recent analysis of the Northern Manhattan Study cohort, ideal cardiovascular health was linked to lower risk of disability in basic activities of daily living, and this association was partly because of ideal serum glucose, but not to other biological risk factors.30
Among the strengths of this study is the prospective study design and the fact that the main study variables were appropriately measured; specifically, physical activity and food consumption were assessed with validated instruments; BMI and BP were measured by trained personnel under standardized conditions; and serum cholesterol and glucose were determined in a central laboratory. Finally, the analyses were adjusted for many potential confounders, and the main results were robust in several sensitivity analyses.

This study also has several limitations. First, the analytic sample was somewhat healthier than the entire cohort; although results were robust in sensitivity analyses across subgroups with different health status, we cannot rule out some attrition bias whose effect on study results would be unknown. Second, this was a cohort of relatively young and noninstitutionalized older adults. Several studies on cardiovascular risk and frailty have been conducted with individuals of the same age or younger than ours, possibly because the relative (though not the absolute) effect of cardiovascular risk factors on health outcomes decreases with age, and it is easier to observe in younger subjects. Notwithstanding this, our results might not apply to the oldest old or in other settings. Third, the duration of follow-up was only 3.5 years, which could not allow for observing the full impact of ideal cardiovascular health on frailty. However, several classic studies on frailty also have a short follow-up because frailty is a rather frequent outcome, and the relatively short life expectancy of older adults makes of particular interest to reveal short-term effects of both risk factors and preventive interventions. Fourth, frailty can be assessed with 2 main approaches (the phenotypic one based on the Fried criteria and the deficit accumulation approach), as well as with many modifications of their original versions. It is also known that the different approaches could make a substantial impact on study results.

Thus, despite we ascertained frailty with the Fried criteria, which are widely used in the literature, our results should be confirmed using other definitions. Fifth, ideal cardiovascular metrics were assessed only once at baseline; thus, we cannot be sure that they represent long-term values, particularly for physical activity, diet, and BMI. However, physical activity usually decreases over the life course, while BMI tends to increase up to the age of 70 and so it is likely that most individuals with ideal metrics for these variables have presented them for a long time. Moreover, the main driver of changes in health behaviors is the diagnosis of a health disorder. Given that our analyses were based on individuals free of CVD at baseline and that ideal metrics for BP, serum cholesterol, and glucose were based on untreated values, it is unlikely that ideal metrics for physical activity, diet, or BMI in old age could have resulted from the diagnosis of CVD or any of its biological risk factors. And sixth, given that this was an observational study, and despite the analyses accounted for many variables related to both cardiovascular health and frailty, a certain residual confounding cannot be ruled out.

Conclusions

Our results showing a lower frailty risk in older adults with ideal cardiovascular health are of public health relevance for several reasons. First, they suggest that population-wide primordial prevention is a key strategy for preventing frailty and reducing the undesired consequences of population aging. By contrast to primary CVD prevention (control of established CVD risk factors), which requires continuous health care, primordial intervention through appropriate social changes could definitively minimize CVD burden without extensive provision of health services. Second, our results point to the predominant role of behavioral over biological CVD risk factors in frailty prevention. Maintaining an active life and a normal BMI entails keeping anthropological normality throughout adult life because most infants and children are physically active and have a healthy weight. This also seems to be a rational approach for preventing the onset of biological risk factors (eg, high BP) and achieving longevity without CVD and frailty.

Ideal Cardiovascular Health and Risk of Frailty in Older Adults
Auxiliadora Graciani, Esther García-Esquinas, Esther López-García, José R. Banegas and Fernando Rodríguez-Artalejo

Circ Cardiovasc Qual Outcomes. 2016;9:239-245; originally published online May 10, 2016;
doi: 10.1161/CIRCOUTCOMES.115.002294
Circulation: Cardiovascular Quality and Outcomes is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7705. Online ISSN: 1941-7713

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/9/3/239

Data Supplement (unedited) at:
http://circoutcomes.ahajournals.org/content/suppl/2016/05/10/CIRCOUTCOMES.115.002294.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at: http://circoutcomes.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Supplemental table. Sensitivity analyses for the association between the number of ideal cardiovascular health metrics or the cardiovascular metric score and the risk of frailty.

<table>
<thead>
<tr>
<th>No. of frailty cases</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard ratio (95%CI)</td>
<td>Hazard ratio (95%CI)</td>
</tr>
<tr>
<td>Number of ideal health metrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding 182 subjects with IADL limitation at baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 ideal metrics</td>
<td>30</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>16</td>
<td>0.41 (0.22-0.76)**</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>34</td>
<td>0.50 (0.29-0.83)**</td>
</tr>
<tr>
<td>Excluding 122 subjects with depression needing treatment at baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 ideal metrics</td>
<td>38</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>26</td>
<td>0.46 (0.27-0.77)**</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>38</td>
<td>0.48 (0.30-0.77)**</td>
</tr>
<tr>
<td>Defining frailty ≥ 2 out of 4 Fried criteria (excluding the weight loss criterion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 ideal metrics</td>
<td>85</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>108</td>
<td>1.05 (0.78-1.41)</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>124</td>
<td>0.78 (0.58-1.04)</td>
</tr>
<tr>
<td>Defining frailty ≥ 2 out of 4 Fried criteria (excluding the low physical activity criterion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 ideal metrics</td>
<td>81</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>84</td>
<td>0.84 (0.61-1.15)</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>105</td>
<td>0.69 (0.51-0.93)*</td>
</tr>
<tr>
<td>Excluding 96 subjects with the low physical activity criterion at baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 ideal metrics</td>
<td>29</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>22</td>
<td>0.48 (0.27-0.85)*</td>
</tr>
<tr>
<td>≥3 ideal metrics</td>
<td>34</td>
<td>0.50 (0.29-0.84)*</td>
</tr>
</tbody>
</table>
Supplemental table. Cont.

<table>
<thead>
<tr>
<th>Number of ideal health metrics</th>
<th>No. of frailty cases</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excluding 111 subjects diagnosed with CVD or atrial fibrillation during follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 ideal metrics</td>
<td>31</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td>2 ideal metrics</td>
<td>23</td>
<td>0.50 (0.29-0.88)*</td>
<td>0.50 (0.27-0.91)*</td>
</tr>
<tr>
<td>≥ 3 ideal metrics</td>
<td>39</td>
<td>0.54 (0.32-0.89)*</td>
<td>0.61 (0.36-1.04)</td>
</tr>
</tbody>
</table>

Cardiovascular metric score†
Excluding 182 subjects with IADL limitation at baseline

0-5	17	Ref.	Ref.
6	17	0.98 (0.50-1.93)	1.04 (0.52-2.09)
7	13	0.66 (0.31-1.34)	0.79 (0.37-1.68)
8	18	0.64 (0.33-1.29)	0.80 (0.40-1.61)
> 8	15	0.36 (0.17-0.72)**	0.42 (0.20-0.88)*

Excluding 122 subjects with depression needing treatment at baseline

0-5	24	Ref.	Ref.
6	26	1.03 (0.59-1.80)	1.06 (0.59-1.92)
7	18	0.64 (0.34-1.20)	0.75 (0.39-1.45)
8	19	0.55 (0.30-1.00)	0.80 (0.42-1.52)
> 8	15	0.33 (0.17-0.64)**	0.41 (0.21-0.83)*

Defining frailty ≥ 2 out of 4 Fried criteria (excluding the weight loss criterion)

0-5	65	Ref.	Ref.
6	55	0.87 (0.60-1.25)	0.88 (0.60-1.27)
7	64	0.90 (0.64-1.28)	0.92 (0.64-1.31)
8	64	0.73 (0.52-1.04)	0.80 (0.56-1.15)
> 8	69	0.52 (0.37-0.74)**	0.56 (0.39-0.81)**
Supplemental table. Cont. 2.

<table>
<thead>
<tr>
<th>Cardiovascular metric score†</th>
<th>No. of frailty cases</th>
<th>Model 1 Hazard ratio (95%CI)</th>
<th>Model 2 Hazard ratio (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>0.86 (0.58-1.27)</td>
<td>0.89 (0.60-1.34)</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>0.89 (0.61-1.30)</td>
<td>0.96 (0.65-1.42)</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>0.71 (0.49-1.04)*</td>
<td>0.83 (0.56-1.24)</td>
</tr>
<tr>
<td>>8</td>
<td>57</td>
<td>0.52 (0.35-0.75)**</td>
<td>0.59 (0.40-0.88)**</td>
</tr>
</tbody>
</table>

Excluding 96 subjects with the low physical activity criterion at baseline

<table>
<thead>
<tr>
<th></th>
<th>No. of frailty cases</th>
<th>Model 1 Hazard ratio (95%CI)</th>
<th>Model 2 Hazard ratio (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.71 (0.37-1.37)</td>
<td>0.71 (0.36-1.40)</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>0.60 (0.30-1.19)</td>
<td>0.63 (0.31-1.28)</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>0.59 (0.32-1.11)</td>
<td>0.69 (0.36-1.33)</td>
</tr>
<tr>
<td>>8</td>
<td>12</td>
<td>0.24 (0.11-0.51)**</td>
<td>0.24 (0.11-0.53)**</td>
</tr>
</tbody>
</table>

Excluding 111 subjects diagnosed with CVD or atrial fibrillation during follow-up

<table>
<thead>
<tr>
<th></th>
<th>No. of frailty cases</th>
<th>Model 1 Hazard ratio (95%CI)</th>
<th>Model 2 Hazard ratio (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.97 (0.52-1.79)</td>
<td>1.04 (0.54-2.01)</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>0.65 (0.33-1.27)</td>
<td>0.75 (0.37-1.53)</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>0.60 (0.32-1.14)</td>
<td>0.81 (0.41-1.58)</td>
</tr>
<tr>
<td>>8</td>
<td>15</td>
<td>0.31 (0.16-0.62)**</td>
<td>0.39 (0.19-0.80)**</td>
</tr>
</tbody>
</table>

CI: Confidence interval; IADL: Instrumental Activities of Daily Living. CVD: cardiovascular disease. *p<0.05; **p<0.01
Model 1. Adjusted for sex, age (years) and education (primary school or lower/secondary or high school/university).
Model 2. Adjusted as in model 1 and additionally for alcohol intake (g/d), cancer (no/yes), obstructive lung disease (no/yes), osteo-muscular disease (no/yes), depression requiring treatment (no/yes), IADL limitation (no/yes) and number of frailty criteria (0/1/2) at baseline.

†Cardiovascular metric score, where we assigned 0 to a poor metric, 1 to an intermediate metric and, and 2 to an ideal metric. The score was calculated by summing values for each of the 7 metrics (possible range 0 to 14). To obtain a fairly homogeneous distribution of frailty, we defined the following categories of this score: 0-5, 6, 7, 8, and >8.