Cost-Effectiveness of Computed Tomographic Angiography
Before Reoperative Coronary Artery Bypass Grafting
A Decision-Analytic Model

Hemal Gada, MD, MBA; Milind Y. Desai, MD; Thomas H. Marwick, MD, PhD, MPH

Background—The risks of repeat thoracotomy can be reduced if thoracic multidetector computed tomographic angiography (CTA) is used to guide preventive surgical strategies (PSS: peripheral cardiopulmonary bypass, circulatory arrest, and nonmedian sternotomy). We sought to define the cost-effectiveness of CTA using a Markov model.

Methods and Results—We studied outcomes and costs of CTA and non-CTA strategies in a modeled cohort of 10,000 patients undergoing redo coronary artery bypass grafting. Rates of PSS implementation were anticipated to follow identification of risk by CTA. Transitions, costs, and utilities were informed by our experience and the literature. Sensitivity analyses included testing a range of costs of CTA and PSS on model outcome. In the reference case, cost and quality-adjusted life years accrued with the use of CTA ($74,869, 4.63 quality-adjusted life-years) were slightly higher than nonuse ($73,471, 4.59 quality-adjusted life-years), yielding an incremental cost-effectiveness ratio of $34,950/quality-adjusted life-years. Cost of PSS (equipment and operating time) was the most significant determinant of incremental cost-effectiveness ratio. In the reference case (cost of CTA = $300), identification and avoidance of potential procedural difficulties with CTA rendered it cost-effective if the cost of PSS was <$12,000. Across a range of CTA costs, incremental cost-effectiveness ratio was not materially influenced by outcomes across a broad range of imputed values.

Conclusions—The cost of CTA appears justified in the setting of isolated reoperative coronary artery bypass grafting, because it aids in appropriate selection of PSS. The cost-effectiveness of this imaging seems more influenced by the costs of subsequent PSS than by the cost of CTA. (Circ Cardiovasc Qual Outcomes. 2012;5:00-00.)

Key Words: cost-effectiveness ◼ computed tomography (multidetector) ◼ coronary artery bypass grafting

Reoperative coronary artery bypass grafting (CABG) carries a greater morbidity and mortality than primary CABG due to the higher risk profile of reoperative CABG patients and the technical difficulty of reoperative CABG. Thoracic multidetector computed tomographic angiography (CTA) can identify high-risk features such as adherence or proximity of the right ventricle or aorta to the chest wall or bypass grafts crossing midline near (or adhered to) the sternum. The identification of these features allows modification of the surgical approach to include implementation of preventive surgical strategies (PSS), which include nonmidline approach, peripheral cardiopulmonary bypass before incision, peripheral arterial, and venous dissection before sternotomy, and deep hypothermic circulatory arrest. Adverse events during reoperative CABG occur more frequently when PSS are not used when warranted, and the omission of which translates into poor patient outcome and higher cost. Use of CTA has also been demonstrated to shorten perfusion and cross clamp time and decrease the rates of perioperative stroke and myocardial infarction in reoperative CABG patients. However, no studies have been performed to assess whether the outcomes associated with CTA use justify the cost of imaging. Because the cost of imaging appears likely to be bundled into an episode of care, we sought to perform a cost-effectiveness analysis of CTA in the setting of isolated reoperative CABG using a decision-analytic model.

Model Development
This decision-analytic model evaluated the outcomes and costs inherent in the use of contrast-enhanced thoracic multidetector CTA in the setting of isolated reoperative CABG. We informed our decision-analytic model using the existing literature and operator experience at our institution.

A Markov model with Monte Carlo simulations was developed using standard commercial software (TreeAge Pro 2009, TreeAge, Williamstown, MA) to study a hypothetical cohort of 10,000 patients through a number of health states that arose as a consequence of reoperative CABG preceded or not preceded by CTA (Figure 1). Anticipated transition states in the model were developed for patients on the basis of the use of CTA and the subsequent diagnosis of findings that would then influence the implementation of PSS. The model estimated quality-adjusted life years (QALY) and lifetime cost, to permit examination of the incremental cost-effectiveness ratio of the
WHAT IS KNOWN

- Thoracic multidetector computed tomographic angiography (CTA) aids in the assessment of high-risk features to better guide the implementation of preventive surgical strategies in the setting of isolated reoperative coronary artery bypass grafting.
- The cost-effectiveness of using CTA in the setting of reoperative coronary artery bypass grafting is undefined.

WHAT THE STUDY ADDS

- A Markov model, using parameters of health states, utilities, and costs derived from the literature, indicated that CTA has an incremental cost-effectiveness ratio of $34,950 in the setting of isolated reoperative coronary artery bypass grafting, thus meeting accepted criteria for incremental cost-effectiveness.
- The incremental cost-effectiveness ratio of CTA in this setting is dependent on the cost of the preventive surgical strategies used, rather than the cost of CTA, with CTA incrementally cost-effective if preventive surgical strategies cost is <$12,000.

Table 1. Transition Probabilities and Mortality Rates (±SD)

<table>
<thead>
<tr>
<th></th>
<th>CTA, %</th>
<th>No CTA, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition probabilities for patients to experience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perioperative mortality<sup>4,5</sup></td>
<td>9.4±2.2</td>
<td>9.1±2.6</td>
</tr>
<tr>
<td>Myocardial infarction<sup>4,5</sup></td>
<td>0.3±0.5</td>
<td>3.2±3.4</td>
</tr>
<tr>
<td>Stroke<sup>4,5</sup></td>
<td>1.8±2.6</td>
<td>5.0±0.8</td>
</tr>
<tr>
<td>Urgent reoperation<sup>4,5</sup></td>
<td>7.2±3.2</td>
<td>5.4±1.0</td>
</tr>
<tr>
<td>High-risk CTA<sup>4,5</sup></td>
<td>46</td>
<td>N/A</td>
</tr>
</tbody>
</table>

CTA indicates computed tomographic angiography; CABG, coronary artery bypass grafting; and N/A, not applicable.

Health Outcomes Information

Information regarding health outcomes was obtained from the literature. Utility was age-adjusted, declining by 0.3% per year of age, and utility weights (Table 2) were multiplied by the duration in each health state to calculate QALYs.¹²⁻¹⁴ The utility weight of myocardial infarction was obtained from a large study that examined health burden associated with individual medical conditions.¹² Utilities of stroke survivors vary widely; based on a comprehensive systematic review, we used a utility for disabling stroke derived from time trade-off and standard gamble methods.¹³ To our knowledge, the utility of patients after reoperative CABG, and those who have undergone urgent reoperation after reoperative CABG, have not been studied.

Table 2. Utility Values for Each Health State

<table>
<thead>
<tr>
<th></th>
<th>Utility Value (±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial infarction<sup>12</sup></td>
<td>0.70±0.03</td>
</tr>
<tr>
<td>Stroke<sup>13</sup></td>
<td>0.46±0.01</td>
</tr>
<tr>
<td>Urgent reoperation<sup>12</sup></td>
<td>0.66±0.04</td>
</tr>
<tr>
<td>Postreoperative CABG<sup>14</sup></td>
<td>0.78±0.26</td>
</tr>
</tbody>
</table>

CABG indicates coronary artery bypass grafting.

Figure 1. Markov model for comparing management of patients with and without computed tomographic angiography (CTA) prior to reoperative coronary artery bypass grafting (CABG). Management of patients with prior CTA may involve use of preventive surgical strategies (PSS).⁶ Transition probabilities are unique and dependent on preceding state.
Table 3. Costs Associated with Each Health State

<table>
<thead>
<tr>
<th>Health State</th>
<th>Mean Cost (±SD Where Available)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA17</td>
<td>$306.08</td>
</tr>
<tr>
<td>Redo CABG18,19</td>
<td>$322.01±23.059</td>
</tr>
<tr>
<td>Myocardial infarction18</td>
<td>$11,091±1809</td>
</tr>
<tr>
<td>Stroke20</td>
<td>$18,552</td>
</tr>
<tr>
<td>Urgent reoperation18,19</td>
<td>$18,809</td>
</tr>
<tr>
<td>Preventive surgical strategies</td>
<td>$10,000±2000</td>
</tr>
<tr>
<td>Perioperative mortality21</td>
<td>$42,887±18,519</td>
</tr>
</tbody>
</table>

CTA indicates computed tomographic angiography; CABG, coronary artery bypass grafting.

Cost Information

The analysis took the perspective of the healthcare provider and consequently used the amount reimbursed to the provider as the cost of care. Information regarding costs was obtained primarily from the literature, including diagnostic related groups, and Medicare payments for current procedural terminology codes (Table 3).17–21 The cost of the CTA was obtained from a study evaluating the cost-effectiveness of CTA in assessing patients with chest pain in the emergency department.21 Given that CTA cost may differ given different protocols and indications for the imaging, it was subject to sensitivity analysis. Annual follow-up costs for patients with perioperative myocardial infarction, stroke, and urgent reoperation were additive on the cost of follow-up after reoperative CABG. The cost of PSS has not been stated in the literature, but was estimated from experience at our institution, and included estimation of direct technical costs of anesthesia, surgical equipment, added operative time, and nursing. Costs could not be itemized beyond this estimated figure. Given this uncertainty regarding PSS cost, the value was subject to sensitivity analysis.

Analyses

One-way sensitivity analyses were performed to identify the critical sources of variation in the input data. Probabilistic sensitivity analyses were performed from the Markov model using a Monte Carlo analysis. β distributions were assigned to probabilities and utility weights, and γ distributions were assigned to costs on the basis of standard errors derived from the associated literature.

Means and 95% credible intervals (95% confidence interval) for each of the posterior distributions were computed on the basis of 10,000 iterations. Meaningful increments in quality of life were based on previous studies.22 An incremental cost-effectiveness ratio of <$100,000/QALY gained was used as the willingness-to-pay threshold of acceptable cost-effectiveness. The net monetary benefit for a willingness-to-pay of $100,000 was evaluated in sensitivity analyses.

Results

Health Outcomes and Costs of CTA

The use of CTA was associated with a lifetime QALY gain of 0.04 after adjustment and discounting (expected QALYs with and without CTA being 4.63 and 4.59, respectively). However, the lifetime cost with CTA use was higher than without CTA ($74,869 versus $73,471), yielding an incremental cost-effectiveness ratio of $34,950/QALY.

Monte Carlo Simulation

The distribution of simulated cost-effectiveness of the CTA strategy (Figure 2) show the majority of simulations (52%) within the 95% confidence ellipse as being under the willingness-to-pay slope. The spectrum of costs with CTA exceed that without CTA, as does the spectrum of benefit.

Sensitivity Analyses

Threshold analyses were used to investigate the limits of transition probabilities, mortality rates, costs, and utilities that could influence the outcome of the model. Each factor was analyzed across a clinically plausible range. Cost of PSS was the only factor that drove net monetary benefit in favor of a particular strategy. As shown in the 1-way sensitivity analysis in Figure 3, if the cost of PSS remained below $12,000, the CTA strategy derived superior net monetary benefit. The cost of CTA had no influence on the superiority of a given strategy when varied across a broad range ($0–$20,000), as shown in the 1-way sensitivity analysis in Figure 4. The lack of influence CTA cost had over the model is further demonstrated in the 2-way sensitivity analysis depicted in Figure 5. Because CTA cost is

Figure 2. Incremental cost-effectiveness plane for the computed tomographic angiography strategy from 10,000 simulations of the decision-analytic model. Ellipse represents 95% confidence interval. Line represents the willingness-to-pay with slope of $100,000/QALY (quality-adjusted life-years). Fifty-two percent of simulations lie below the willingness-to-pay.

Figure 3. One-way sensitivity analysis evaluating net monetary benefits across a broad range of preventive surgical strategy (PSS) cost (cPreventive), given willingness-to-pay (WTP) of $100K. Net monetary benefit is higher with the use of computed tomographic angiography (CTA) if the cost of PSS is <$12K.
varied across a broad range, the particular threshold at which CTA derives superior net monetary benefit is largely driven by the cost of PSS.

Scenario Analysis

Given the results of the sensitivity analyses above, an additional scenario was examined that explored alternative rates of PSS in the setting of high- and low-risk CTA findings. Because PSS cost drives the cost-effectiveness of this imaging modality in the setting of reoperative CABG, the rate at which it is implemented might influence the cost-effectiveness as well. Figure 6 details the effects of modifying the rate at which PSS is used and the result on CTA cost-effectiveness. As shown in Figure 6A, the rate of PSS use with high-risk CTA findings does not impact the cost-effectiveness of CTA. Alternatively, as presented in Figure 6B, the rate of PSS used with low-risk CTA findings appears to modify cost-effectiveness of CTA (and render it not cost-effective) if PSS is used in >47% of cases with low-risk CTA findings.

Use of Decision Analysis in Justifying the Plan of Care

Advances in cardiovascular imaging (in this case, CTA) are commonly adopted into care pathways on the basis of perceived need, without formal evaluation of cost-effectiveness. In this situation, the necessity for PSS is now largely defined by the identification of high-risk features on CTA. The benefits of CTA would now be difficult to study in a randomized trial, so a decision-analysis approach, with its ability to study variations in assumptions in sensitivity analyses, represents a reasonable option to define the benefit of the addition of CTA.

The calculation of incremental cost-effectiveness is only valid when benefit is identified. An increment of 0.04 QALY (2 additional weeks of life at full quality) is within the realm of what has been defined previously as a meaningful increment in survival, based on a difference in QALYs of >0.03 falling outside the 95% confidence intervals of reported utilities. In addition, net monetary benefit, which assigns monetary value to a unit of effectiveness that is then multiplied by the net number of units of effectiveness achieved, showed that the cost of CTA use was less than the value of the additional benefit achieved.

Model Assumptions

Assumptions regarding transition probabilities, outcomes, and costs are inherent in the modeling process, although they are largely informed by the literature. However, in our model, assumptions pertaining to transition probabilities (eg, the linear event rate assumed from nonlinear data), utilities (eg, the assumption of utility posturgent CABG being equivalent to that of heart failure), and costs (eg, the estimate of PSS cost from our institutional experience) were subject to sensitivity analyses. These values were studied across a broad range to determine the impact of these assumptions on model outcome. The only variable that had impact on net monetary benefit was PSS cost. The cost of PSS in our institution, which was estimated at $10,000, may be different at other institutions. However, our analysis provides a threshold at which to interpret...
this cost with regards to its impact on the incremental cost-effectiveness of CTA use.

Aside from limitations related to assumptions above, which have been largely addressed by sensitivity analyses, the transition probabilities used in our model were based on 2 studies in the literature that described outcomes of CTA use in cohorts undergoing reoperative CABG. These were retrospective studies, and although they compared well-matched study groups, the possibility of confounding, selection bias, and unmeasured variables should be considered. In addition, the implications of more frequent PSS use need to be studied further and are not clarified by the present analysis. Given that the cost-effectiveness of CTA in the setting of reoperative CABG is driven by the cost of PSS, it would be useful to study whether more frequent PSS use, at the surgeon’s discretion, would be justified by the added costs associated with PSS. Our scenario analysis, which showed the influence of the rate of subsequent PSS on the cost-effectiveness of CTA, speaks to the clinical utility of CTA in reoperative CABG and the practicality of its use.

Conclusions

The use of CTA in the setting of isolated reoperative CABG appears to satisfy the standard criteria for cost-effectiveness. Most importantly, this Markov model demonstrates that cost of PSS is a more important driver of cost-effectiveness than the cost of CTA itself. In an era where the cost of imaging is coming under increasing scrutiny, decision analysis is a valuable means of understanding the cost and outcome implications of adding imaging tests to clinical protocols.

Disclosures

Supported in part by a Program Grant (519823) from the National Health and Medical Research Council of Australia, Canberra, Australia.

References

Cost-Effectiveness of Computed Tomographic Angiography Before Reoperative Coronary Artery Bypass Grafting: A Decision-Analytic Model
Hemal Gada, Milind Y. Desai and Thomas H. Marwick

Circ Cardiovasc Qual Outcomes. published online August 28, 2012;
Circulation: Cardiovascular Quality and Outcomes is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7705. Online ISSN: 1941-7713

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/early/2012/08/28/CIRCOUTCOMES.112.966465

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/