Effect of a Computer-Guided, Quality Improvement Program for Cardiovascular Disease Risk Management in Primary Health Care

The Treatment of Cardiovascular Risk Using Electronic Decision Support Cluster-Randomized Trial

David Peiris, MBBS, MIPH, PhD; Tim Usherwood, MBBS, MD; Kathryn Panaretto, MBBS, MPH; Mark Harris, MD; Jennifer Hunt, MBBS, PhD; Julie Redfern, PhD; Nicholas Zwar, MBBS, PhD; Stephen Colagiuri, MD; Noel Hayman, MBBS, MPH; Serigne Lo, PhD; Bindu Patel, MPH; Marilyn Lyford, BHSc; Stephen MacMahon, DSc; Bruce Neal, MBChB, PhD; David Sullivan, MBBS; Alan Cass, MBBS, PhD; Rod Jackson, PhD; Anushka Patel, MBBS, SM, PhD

Background—Despite effective treatments to reduce cardiovascular disease risk, their translation into practice is limited.

Methods and Results—Using a parallel arm cluster-randomized controlled trial in 60 Australian primary healthcare centers, we tested whether a multifaceted quality improvement intervention comprising computerized decision support, audit/feedback tools, and staff training improved (1) guideline-induced risk factor measurements and (2) guideline-induced medications for those at high cardiovascular disease risk. Centers had to use a compatible software system, and eligible patients were regular attendees (Aboriginal and Torres Strait Islander people aged ≥35 years and others aged ≥45 years). Patient-level analyses were conducted using generalized estimating equations to account for clustering. Median follow-up for 38,725 patients (mean age, 61.0 years; 42% men) was 17.5 months. Mean monthly staff support was <1 hour/site. For the coprimary outcomes, the intervention was associated with improved overall risk factor measurements (62.8% versus 53.4% risk ratio; 1.25; 95% confidence interval, 1.04–1.50; \(P = 0.02 \)), but there was no significant differences in recommended prescriptions for the high-risk cohort (\(n = 10,308 \); 56.8% versus 51.2%; \(P = 0.12 \)). There were significant treatment escalations (new prescriptions or increased numbers of medicines) for antiplatelet (17.9% versus 2.7%; \(P < 0.001 \)), lipid-lowering (19.2% versus 4.8%; \(P < 0.001 \)), and blood pressure–lowering medications (23.3% versus 12.1%; \(P = 0.02 \)).

Conclusions—In Australian primary healthcare settings, a computer-guided quality improvement intervention, requiring minimal support, improved cardiovascular disease risk measurement but did not increase prescription rates in the high-risk group. Computerized quality improvement tools offer an important, albeit partial, solution to improving primary healthcare system capacity for cardiovascular disease risk management.

Clinical Trial Registration—URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=336630. Australian New Zealand Clinical Trials Registry No. 12611000478910. (Circ Cardiovasc Qual Outcomes. 2015;8:00-00. DOI: 10.1161/CIRCOUTCOMES.114.001235.)

Key Words: cardiovascular diseases ■ primary health care ■ quality improvement

Cardiovascular diseases (CVDs) are the greatest contributors to the global burden of disease, and finding ways to reduce this burden are a major challenge faced by health systems worldwide.1 Most guidelines recommend that the decision to use vascular disease preventive drug therapy should be on the basis of a patient’s overall or absolute cardiovascular risk.2 The broader application of risk-based care with safe, effective treatments has the potential to reduce disease burden substantially.
WHAT IS KNOWN

• Effective treatments to reduce cardiovascular disease risk exist, but their use in routine clinical practice is limited, and as few as 50% of people at high cardiovascular disease risk are prescribed appropriate treatments.
• Computerized clinical support tools are a promising strategy to improve healthcare quality.
• Clinical trials in this area are variable in quality, tend to lack data on clinical parameters, and are not scalable.

WHAT THE STUDY ADDS

• This Australian cluster-randomized trial, involving >38,000 people and 60 health services, tested a decision support system, combined with audit and feedback strategies.
• The intervention results in a 10% absolute improvement in screening for cardiovascular disease risk.
• However, there were no significant improvements in prescribing recommended medicines to people at high cardiovascular disease risk although there were significant improvements in treatment escalation (new prescriptions or increased numbers of medicines) of recommended medicines.
• The findings suggest that computerized tools may play an important role in preventative treatments; however, there is an important opportunity to improve clinical management further.

The Treatment of Cardiovascular Risk using Electronic Decision Support (TORPEDO) study was a cluster randomized trial that tested whether a computer-guided QI intervention comprising point-of-care electronic decision support, audit and feedback tools, and clinical workforce training improved CVD risk management when compared with usual care.

Methods

Study Design

Parallel arm cluster-randomized controlled trial in 60 Australian primary healthcare centers.

Included Patients and Health Services

Health services were eligible to participate if there was exclusive use of 1 of the 2 compliant software systems to record risk factor information, pathology test results and prescribe medications and a willingness from all clinical staff to use the intervention. The eligible patient population was based on Australian guideline vascular risk screening recommendations and defined as all Aboriginal and Torres Strait Islander people ≥35 years and all others ≥45 years (no upper age limit) who had attended the service ≥3 times in the previous 24-month period and at least once in the previous 6-month period. The outcome evaluation cohort included patients who met these criteria at both baseline and end of study data extractions.

Study Setting

General practices were recruited from the Sydney region with assistance from primary healthcare organizations known as Medicare Locals. ACCHSs were recruited through collaboration with 2 state representative bodies from NSW and Queensland and included urban, rural, and remote services. A $500AUD reimbursement to all participating sites was made to assist with study-related activities. All license costs and technical support associated with the intervention were provided free to intervention sites. The costs associated with patient care occurred as per usual practice. Australia has a universal health insurance scheme (Medicare), which subsidizes primary healthcare consultations on a predominantly fee for service basis. General practices can charge patients above the Medicare rebate at their discretion. ACCHSs do not charge above the rebate and receive additional state and federal funding for provision of other primary healthcare services beyond general practice care.

Randomization and Allocation Concealment

Randomization was in a 1:1 allocation to the intervention or usual care stratified at 3 levels: (1) ACCHS versus general practices; (2) service size (<500 patients meeting eligibility criteria versus ≥500); and (3) current participation in a national or state QI program. Permuted block randomization was performed centrally, and outcome analyses were conducted blinded to randomized allocation. Participating services did not make any special provisions to advertise the trial and their allocation status to patients; however, it would be reasonable to assume that when the tools were used during a consultation patients may have been aware of the intervention.

Intervention

Full details of the intervention have been published and are also summarized in the Appendix in the Data Supplement. In brief, a single-screening and management algorithm were developed and then validated, based on a synthesis of recommendations from several screening and management guidelines for CVD, kidney disease, and diabetes mellitus. The algorithm interfaces with 2 clinical practice software systems that together comprise >80% of primary healthcare record systems in Australia. Data from the patient record prepopulate the tool. Point-of-care recommendations based on that patient’s absolute CVD risk are provided. If the patient is receiving suboptimal
screening or management, a series of traffic light prompts alert the practitioner to suggested recommendations. A risk communication tool also assists patients to understand their CVD risk, including how overall risk is affected by changes in individual risk factors.

Identification of screening and management gaps for the whole patient population was also built into a commonly used audit tool. This tool allows health services to audit health records, identify performance gaps, and establish recall/reminder prompts rapidly. It also allows for deidentified data to be exported to a Web-based portal where health services can view peer-ranked performance data benchmarked against other participating trial sites.

Clinical staff were trained in use of the tools and received access to a technical support desk. One face-to-face training visit was supplemented with ad hoc visits to resolve technical issues as required. Bimonthly Webinars were offered with a focus on the practical demonstrations of the tools. Sites allocated to the control arm continued usual care without access to the intervention tools or training. Services in both arms participating in existing QI initiatives continued with these programs at their discretion. Intervention was for a minimum of 12 months.

Data Collection
Deidentified data extracts were obtained for all patients who met the eligibility criteria with an encrypted identifier code attached to each patient’s data to allow for longitudinal comparisons. Data extraction was performed using a validated extraction tool at 1 month before randomization to check data quality, at randomization and at the end of the study.

Outcomes
Coprimary outcomes were defined as follows:

1. The proportion of eligible patients who received appropriate screening of CVD risk factors by the end of study. This was defined as having recorded: smoking status at least once, systolic blood pressure (BP) in the previous 2 months, total cholesterol and high-density lipoprotein cholesterol in the previous 24 months.

2. The proportion of eligible patients defined at baseline as being at high CVD risk, receiving recommended medication prescriptions at the end of study. This was defined as (1) current prescription for ≥1 BP-lowering drugs and a statin for people at high risk without established CVD, (2) current prescription for ≥1 BP-lowering drugs and a statin and an antplatelet agent (unless contraindicated by oral anticoagulant use) for people with established CVD, or (3) lowering of calculated 5-year CVD risk to ≤5%.

High CVD risk is defined in Australian guidelines as (1) history of CVD (diagnosis of coronary heart disease, cerebrovascular disease, peripheral vascular disease); (2) the presence of any guideline-stipulated clinically high-risk conditions (diabetes mellitus and age >60 years, diabetes mellitus and albuminuria, stage 3B chronic kidney disease, or extreme individual risk factor elevations: systolic BP ≥180 mmHg, diastolic BP ≥110 mmHg, total cholesterol >7.5 mmol [290 mg/dL]); or (3) a calculated 5-year CVD risk of >15% using the 1991 Anderson Framingham equation.

Secondary outcome measures included (1) measurements of individual CVD risk factors (smoking status, BP, lipids, body mass index, estimated glomerular filtration rate, and albuminuria); (2) escalation of drug prescription among patients at high CVD risk (either newly prescribed or additional numbers of antplatelet, BP-lowering and lipid-lowering agents); (3) BP and serum lipid levels among people at high CVD risk; and (4) newly recorded CVD-related diagnoses.

Sample Size
Randomization of 60 services (30 per arm) was calculated to provide 90% power to detect a ≥10% absolute higher occurrence in each primary study outcome among services receiving the intervention. This assumed for the coprimary outcomes a 10% absolute improvement in the control arm as a result of study participation, an average cluster size of 750 patients with 30% of these at high CVD risk, baseline rates of risk factor measurement and appropriate prescribing of 50%, and an intracluster correlation coefficient of 0.05. The intracluster correlation coefficient was based on data from 3 recent cross-sectional studies in Australian general practices and ACCHSs conducted by our group.

Data Analysis
Patient-level data analysis was performed using SAS enterprise guide 5.1 (SAS Institute Inc, Cary, NC) on an intention-to-treat basis using generalized estimating equations with an exchangeable correlation structure to account for clustering of patients within services. The population defined for the primary analyses was a cohort of eligible patients whose health record data were extracted at both randomization and end-of-study periods. Analyses were conducted using Gaussian and log-binomial generalized estimating equation regressions for continuous and binary outcomes, respectively. The intervention effects are expressed as unadjusted rate ratios for binary end points and mean difference for continuous end points with 95% confidence intervals (CIs) and P values. Subgroup analyses were performed using the 3 randomization strata. For each subgroup, the primary analysis was repeated with the addition of the subgroup variable along with its interaction with treatment. Heterogeneity was assessed based on the significance of the interaction term. Although formal adjustments for multiple tests were not made, findings are interpreted in the light of the number of comparisons made and the level of significance of the result.

Ethical Considerations
The study was approved by the University of Sydney Human Research Ethics Committee and the Aboriginal Health and Medical Research Council Human Research Ethics Committee. Individual consent waiver was granted, given data collection was based on deidentified extracts from the electronic health record system. Signed agreements with participating sites were obtained.

Results
Recruitment
Sixty-four services were recruited from September 2011 to May 2012 (Figure 1) with 61 randomized (31 to intervention and 30 to usual care). One small intervention general practice site (n=152 eligible patients) withdrew from the study shortly after randomization. This left 60 randomized services and an outcome evaluation cohort of 38725 eligible patients that included 10308 patients defined as high CVD risk at baseline. Median follow-up for intervention and control arms was 17.3 and 17.7 months, respectively. Almost all intervention services (27 sites) used the audit tool to conduct data extractions and submissions to the Web portal ≥50% of the time (ie, on average data were submitted at least bimonthly). Intervention practices received an average of 48-minute support per month comprising on-site training, remote clinical Webinars, and helpdesk services. A detailed description of this support is provided in the Appendix in the Data Supplement. Table 1 shows the service level characteristics, and Table 2 shows the baseline cardiovascular risk profile of the sample.

Primary and Secondary Outcomes
During follow-up, patients in intervention sites were more likely to receive appropriate screening for CVD risk (62.8% versus 53.4% risk ratio [RR], 1.25; 95% CI, 1.04–1.50; P=0.02; Figure 2). Improvements were mainly driven by improvements in total/high-density lipoprotein cholesterol measurement and
BP recording. There was a trend to heterogeneity of effect based on whether these risk factors were measured at baseline (Figure 3). For the high-risk cohort (n=10,308), baseline prescription rates of recommended medications were 46.7% (intervention) and 52.8% (control; Table 2). At end-of-study comparison, there were no statistically significant improvements in prescription of recommended medications (56.8% versus 51.2%; RR, 1.11; 95% CI, 0.97–1.27; P=0.12). The intervention was most strongly associated with escalation of medications for patients at high risk (new prescriptions or increased numbers of medications) with respect to antiplatelet medications (17.9% versus 2.7%; RR, 4.80; 95% CI, 2.47–9.29; P<0.001), lipid-lowering medications (19.2% versus 4.8%; RR, 3.22; 95% CI, 1.77–5.88; P<0.001), and BP-lowering medications (23.3% versus 12.1%; RR, 1.89; 95% CI, 1.08–3.28; P=0.02).

For the intervention arm site that withdrew from the study, a sensitivity analysis was conducted assuming that there was no improvement in the coprimary outcomes at end of study for this site and this had negligible effect on the findings. Because of likely effect modification relating to initial levels of the coprimary outcome, we did not conduct adjusted analyses for baseline differences. As is more appropriate in the presence of effect modification, we interpreted the effect of the intervention based on stratified results.

In the high-risk cohort, there were no clear effects on mean systolic BP (−2.3 versus −1.5 mm Hg; difference, −0.8 mm Hg; 95% CI, −2.0 to 0.4; P=0.20) and low-density lipoprotein cholesterol (−0.14 versus −0.09 mmol/L; difference, −0.05 mmol/L; 95% CI, −0.12 to 0.01; P=0.08). There was a higher proportion attaining guideline BP targets in the intervention group versus control (61.0% versus 55.0%; RR, 1.10; 95% CI, 1.00–1.20; P=0.05). There were no differences in the proportion attaining lipid targets (P=0.61). There were also no significant differences in prescribing rates for BP, statin, and prescription rates of recommended medications were 46.7% (intervention) and 52.8% (control; Table 2). At end-of-study comparison, there were no statistically significant improvements in prescription of recommended medications (56.8% versus 51.2%; RR, 1.11; 95% CI, 0.97–1.27; P=0.12). The intervention was most strongly associated with escalation of medications for patients at high risk (new prescriptions or increased numbers of medications) with respect to antiplatelet medications (17.9% versus 2.7%; RR, 4.80; 95% CI, 2.47–9.29; P<0.001), lipid-lowering medications (19.2% versus 4.8%; RR, 3.22; 95% CI, 1.77–5.88; P<0.001), and BP-lowering medications (23.3% versus 12.1%; RR, 1.89; 95% CI, 1.08–3.28; P=0.02).

For the intervention arm site that withdrew from the study, a sensitivity analysis was conducted assuming that there was no improvement in the coprimary outcomes at end of study for this site and this had negligible effect on the findings. Because of likely effect modification relating to initial levels of the coprimary outcome, we did not conduct adjusted analyses for baseline differences. As is more appropriate in the presence of effect modification, we interpreted the effect of the intervention based on stratified results.

In the high-risk cohort, there were no clear effects on mean systolic BP (−2.3 versus −1.5 mm Hg; difference, −0.8 mm Hg; 95% CI, −2.0 to 0.4; P=0.20) and low-density lipoprotein cholesterol (−0.14 versus −0.09 mmol/L; difference, −0.05 mmol/L; 95% CI, −0.12 to 0.01; P=0.08). There was a higher proportion attaining guideline BP targets in the intervention group versus control (61.0% versus 55.0%; RR, 1.10; 95% CI, 1.00–1.20; P=0.05). There were no differences in the proportion attaining lipid targets (P=0.61). There were also no significant differences in prescribing rates for BP, statin, and

Table 1. Baseline Service Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Intervention (n=30; n=19,385)</th>
<th>Usual Care (n=30; n=19,340)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤500</td>
<td>15/30 (50%)</td>
<td>15/30 (50%)</td>
</tr>
<tr>
<td>>500</td>
<td>15/30 (50%)</td>
<td>15/30 (50%)</td>
</tr>
<tr>
<td>Type of service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCHS</td>
<td>10/30 (33%)</td>
<td>10/30 (33%)</td>
</tr>
<tr>
<td>General Practice</td>
<td>20/30 (67%)</td>
<td>20/30 (67%)</td>
</tr>
<tr>
<td>Current participation in a QI initiative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>17/30 (57%)</td>
<td>16/30 (53%)</td>
</tr>
<tr>
<td>Yes</td>
<td>13/30 (43%)</td>
<td>14/30 (47%)</td>
</tr>
<tr>
<td>Medical software used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best Practice</td>
<td>10/30 (33%)</td>
<td>11/30 (37%)</td>
</tr>
<tr>
<td>Medical Director</td>
<td>20/30 (67%)</td>
<td>19/30 (63%)</td>
</tr>
<tr>
<td>IT support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both local and external</td>
<td>5/30 (17%)</td>
<td>11/30 (37%)</td>
</tr>
<tr>
<td>External</td>
<td>17/30 (57%)</td>
<td>14/30 (47%)</td>
</tr>
<tr>
<td>Local</td>
<td>8/30 (27%)</td>
<td>5/30 (17%)</td>
</tr>
<tr>
<td>Staff currently using data extraction tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most</td>
<td>1/30 (3%)</td>
<td>1/30 (3%)</td>
</tr>
<tr>
<td>Some</td>
<td>18/30 (60%)</td>
<td>19/30 (63%)</td>
</tr>
<tr>
<td>None</td>
<td>11/30 (37%)</td>
<td>10/30 (33%)</td>
</tr>
</tbody>
</table>

ACCHS indicates Aboriginal Community Controlled Health Service; IT, information technology; and QI, quality improvement.
antiplatelet medicines for those at low risk of CVD (<10% at 5-year risk; all P>0.55). There were no differences in the proportion with newly recorded CVD diagnoses (P=0.72).

There were greater improvements in risk factor screening in smaller when compared with larger health services (P interaction=0.02), but no other significant differences were observed for either primary outcome for any prespecified subgroup (Figure 3).

In a post hoc analysis, there was a significant heterogeneity of effect according to whether patients were prescribed recommended medicines at baseline (interaction P=0.03) with those not prescribed medicines (n=5090) showing a large improvement (38.3% versus 20.9%; RR, 1.59; 95% CI, 1.19–2.13; P<0.001).

Discussion

TORPEDO contributes new evidence on the effect of technology-assisted interventions to improve healthcare quality. It address a recent US Community Prevention Services Taskforce recommendation that multicomponent service delivery interventions, combining electronic health record–integrated decision support with performance feedback, are needed for CVD prevention.17 TORPEDO demonstrated that a
Figure 2. Cardiovascular disease (CVD) risk factor screening and medication management end points. ACR indicates albumin:creatinine ratio; BMI indicates body mass index; BP, blood pressure; CI, confidence interval; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; and ICC, intraclass correlation coefficient.

computer-guided intervention comprising point-of-care decision support, audit and feedback tools, training and support improved cardiovascular risk factor screening. The intervention did not improve the prescription of appropriate preventive drugs in the overall high-risk cohort. The improvements identified in the high-risk individuals inadequately treated at baseline suggest that this is the group most likely to benefit from the intervention; however, this was a post hoc analysis. The escalation in guideline-based care indicates that the intervention was effective in reducing practitioner therapeutic inertia (the failure to initiate or increase therapy when treatment was effective) but, however, TORPEDO was less successful in shifting prescribing behavior, which is consistent with small intervention effects found in the US Community Prevention Services Taskforce systematic review (only a 2% absolute improvement). Consequently, there remains much scope for further improvements if such QI strategies are to translate into tangible health benefits. Berwick has commented that QI is not a single, testable answer. Rather it is a complex process driven by a range of factors at the level of the patient, provider, health service, and the broader health system. For diabetes mellitus care, QI strategies that have targeted both prescriber and patient behavior change in combination seem to be associated with greater success. Similarly, for CVD risk management, patient-focused strategies may be a critically important additional element to improving outcomes. Despite the bold promise of consumer-focused technologies to increase patient engagement, few trials have been conducted.
The strengths of this study include the pragmatic implementation of a randomized study within usual day-to-day practice, the large sample size, the clinical outcome data, scalable intervention components, and the low level of implementation support required. Another strength is the representativeness of participating general practices and ACCHSs. All general practices included in TORPEDO were recruited from urban settings (in which ≈70% of all Australian general practices are based) and had site characteristics that were broadly representative of general practice in Australia. The ACCHSs represented urban, rural, and remote regions and comprised ≈20% of all ACCHSs that provide medical services in Australia. The TORPEDO ACCHS sites also demonstrated service characteristics that were similar to the sector at large. Furthermore, the baseline rates for key outcome measures were similar to those found in previous Australian studies in both general practice and ACCHSs.

The main study limitation is that it was not powered for clinical outcomes. This needs to be balanced against the pragmatic nature of the trial and a focus on increasing prescription of treatments of known efficacy, which is a critical first step in maximizing the full benefits of such treatments. Data linkage studies with national hospitalization and mortality databases are currently being planned and will help to ascertain the effect on hard outcomes. Although not a limitation per se, the intervention is ideally suited for implementation in settings where there are high adoption rates of electronic health records. Australia has among the highest rates of electronic health record adoption in the world (>90%); however, uptake is increasing internationally with the majority of high-income countries in Europe now achieving rates in excess of 80% and substantial implementation occurring in North America, spearheaded by the Medicare and Medicaid meaningful use program. Intervention programs such as that tested by Peiris et al.33,34 are therefore well placed for large-scale implementation in high-income countries. Indigenous governed community health services operating within other high-income country settings, such as United States and Canada, may also be well suited to adopting this intervention. These findings may also have broader relevance to the management of cardiovascular risk in other resource-poor settings and in other rural and remote communities.

The implications of effective QI tools and strategies are substantial. Improving health system performance by even a small margin has the potential to make a major effect on disease burden if improvements can be delivered at scale. Taking

Table 3

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Usual care</th>
<th>Favours</th>
<th>Usual care</th>
<th>Favours</th>
<th>Risk ratio (95% CI)</th>
<th>p-value interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD risk screening by subgroup (n=38,275) (Proportion receiving appropriate and timely measurement of CVD risk factors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCHS</td>
<td>2904/4812 (60.4%)</td>
<td>1579/3459 (45.7%)</td>
<td>1.29 (0.96, 1.70)</td>
<td>0.76</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>General Practice</td>
<td>9260/14573 (63.5%)</td>
<td>8738/15881 (55.0%)</td>
<td>1.22 (0.97, 1.55)</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service size at baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small (<500)</td>
<td>2652/4436 (59.8%)</td>
<td>1620/4343 (37.3%)</td>
<td>1.63 (1.17, 2.26)</td>
<td>0.02</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>Large (>=500)</td>
<td>9512/14949 (63.6%)</td>
<td>8697/14997 (58.0%)</td>
<td>1.03 (0.87, 1.23)</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation at baseline in a national quality improvement program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>5776/11839 (64.0%)</td>
<td>5113/9843 (52.0%)</td>
<td>1.35 (1.00, 1.82)</td>
<td>0.41</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4588/7546 (60.8%)</td>
<td>5204/9497 (54.8%)</td>
<td>1.16 (0.94, 1.43)</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication management for people at high CVD risk (n=10,308) by subgroup (Proportion receiving guideline recommended medication prescriptions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCHS</td>
<td>1112/1622 (68.6%)</td>
<td>787/1195 (65.9%)</td>
<td>1.05 (0.97, 1.14)</td>
<td>0.45</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>General Practice</td>
<td>1918/3713 (51.7%)</td>
<td>1696/3651 (46.5%)</td>
<td>1.14 (0.96, 1.35)</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service size at baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small (<500)</td>
<td>757/1315 (57.6%)</td>
<td>800/1390 (57.6%)</td>
<td>1.04 (0.86, 1.24)</td>
<td>0.35</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Large (>=500)</td>
<td>2273/4020 (56.5%)</td>
<td>1683/3456 (48.7%)</td>
<td>1.18 (0.98, 1.41)</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation at baseline in a QI program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1583/3151 (50.2%)</td>
<td>1021/2209 (46.2%)</td>
<td>1.13 (0.92, 1.39)</td>
<td>0.91</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1447/2184 (66.3%)</td>
<td>1462/2637 (55.4%)</td>
<td>1.11 (0.96, 1.26)</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a conservative estimate that 5% of people in Australia have at least a 20% 5-year CVD risk,\(^{35}\) and using published data on risk reductions from treatment interventions,\(^{36}–^{38}\) a 2 mm\(Hg\) mean systolic BP reduction, 0.1 mmol low-density lipoprotein reduction, and a 10% increase in aspirin adherence together could lead to around a 10% relative risk reduction and \(\approx 20\) fewer events >5 years. Such improvements highlight the great potential for the primary healthcare sector to make a larger contribution to reduction of the CVD burden. Scalable and effective systems that require minimal support to implement could make major improvements in primary healthcare system performance and health outcomes globally.

Acknowledgments

We gratefully acknowledge the support of the general practices and Aboriginal Community Controlled Health Services involved in this study. We also acknowledge the support of the Queensland Aboriginal and Islander Health Council, Aboriginal Health and Medical Research Council, Western Sydney Medicare Local, Inner West Sydney Medicare Local, South Eastern Sydney Medicare Local, Eastern Sydney Medicare Local, South Western Sydney Medicare Local and Nepean-Blue Mountains Medicare Local. We acknowledge the following project staff for their role in supporting implementation of the study: Maria Agaliotis, Sharon Parker, Genevieve Coorey, Lyn Anderson, Melvina Mitchell. We also thank Pen Computer Systems for their support in developing the software tools and the Improvement Foundation for their support in developing and hosting the quality improvement portal. Dr Peiris had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Drs Peiris and Patel conceptualized the intervention and the study. Dr Peiris, Dr Usherwood, Dr Harris, Dr Hunt, Dr Redfern, Dr Zwar, Dr Colaguri, Dr Hayman, Dr Cass, S. MacMahon, Dr Sullivan, Dr Neal, Dr Jackson, Dr Patel contributed to study design. Drs Patel, Lyford, and Peiris contributed to data collection. Dr Peiris, Dr Patel, Dr Lo, S. MacMahon, Dr Usherwood, Dr Panaretto, Dr Harris, Dr Hunt, Dr Cass, Dr Redfern, Dr Zwar, Dr Colaguri, Dr Hayman, Dr Sullivan contributed to data interpretation. Drs Peiris, Patel, and Lo contributed to preparation of initial draft article. All authors contributed to or reviewed subsequent drafts, approved the final version of the submitted article, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Sources of Funding

The National Health and Medical Research Council of Australia and the New South Wales Department of Health funded this study. Both institutions had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the article; and decision to submit the article for publication. Dr Peiris was supported by a National Health and Medical Research Council (NHMRC) Senior Research Fellowship (632938). Dr Redfern is funded by a NHMRC Career Development Fellowship (1054754). Dr Patel is supported by an NHMRC Senior Research Fellowship and now a NHMRC postdoctoral fellowship (G160523). Drs Peiris, Patel, and Lyford are supported by the Commonwealth of Australia's National Heart Foundation Future Fellowship (G160523).

Disclosures

None.

References

22. Okonofua EF, Simpson KN, Jesri A, Rehman SU, Durkalski VL, Egan BM. Therapeutic inertia is an impediment to achieving the Healthy People 2010 blood pressure control goals. Hypertension. 2006;47:345–351. doi: 10.1161/01.HYP.0000200702.76436.4b.

Effect of a Computer-Guided, Quality Improvement Program for Cardiovascular Disease Risk Management in Primary Health Care: The Treatment of Cardiovascular Risk Using Electronic Decision Support Cluster-Randomized Trial

David Peiris, Tim Usherwood, Kathryn Panaretto, Mark Harris, Jennifer Hunt, Julie Redfern, Nicholas Zwar, Stephen Colagiuri, Noel Hayman, Serigne Lo, Bindu Patel, Marilyn Lyford, Stephen MacMahon, Bruce Neal, David Sullivan, Alan Cass, Rod Jackson and Anushka Patel

Circ Cardiovasc Qual Outcomes. published online January 13, 2015;
Circulation: Cardiovascular Quality and Outcomes is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7705. Online ISSN: 1941-7713

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/early/2015/01/13/CIRCOUTCOMES.114.001235

Data Supplement (unedited) at:
http://circoutcomes.ahajournals.org/content/suppl/2015/01/14/CIRCOUTCOMES.114.001235.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org/subscriptions/
Intervention components

Component 1: Point of care decision support for use in clinical consultations

A risk assessment score and traffic light dashboard would appear when the HealthTracker assessment was opened. If essential information was missing to calculate risk then the risk bar would be in greyscale, an alert would state that risk cannot be calculated because essential information is missing and a traffic light prompt would alert the practitioner to the variables that were missing.
Component 2: Risk communication tool

This tool enables health care providers to discuss the risk score with patients and to perform “what if” scenarios to illustrate changes in risk score and trajectory with particular risk factors available. It draws on a similar approach taken in a New Zealand risk communication tool and incorporates a “heart age” calculation to show the user at what age their risk score would be similar to a person with “optimal” risk factor control. The tool was only used for primary prevention and would not appear for those with established cardiovascular disease.
Component 3: Clinical Audit Tool

This data extraction tool allowed clinic staff to monitor performance and identify patients that were not being appropriately managed according to guidelines. Four sets of graphs were provided (screening gaps, risk profile, prescribing gaps for the high risk population and meeting guideline targets for blood pressure and lipids). For each of the graphs the practitioner can click on the red section of the column (eg. those without a cholesterol test performed) and the patients in that section would pop up as a list. Customised bubble alerts can then be set each time that patient record is opened or clinic administration staff can set up recall and reminder alerts/ letters to notify the patient to attend for a consultation.
Component 4: Peer-ranked performance portal

Each month, clinics were asked to send de-identified aggregated data extracts for six performance indicators to a central secure facility. For each indicator the clinic would be able to securely log on to this facility and identify on a histogram their performance (in red) against all other participating sites for that reporting period. They would also be able to access a trend graph of their changes over time compared to the average.
Component 5: Staff training and support

All contact time to support intervention implementation was logged on a standardised reporting template. There were three types of intervention support:

1. **On site-support.** All intervention arm sites received an initial face-to-face visit either at randomisation or shortly after randomisation to familiarize themselves with the intervention. Additional on-site support was provided at the request of the participating service with most sites receiving at least one follow-up visit. The median support time per site for the whole intervention period was 300 minutes (interquartile range (IQR) 172-510 minutes)

2. **Remote clinical support** was provided via training webinars, remote desktop connection and phone support. This was *ad hoc* and provided either at the request of the participating service or via a training webinar which was advertised to particular services. Only 14 of the 30 intervention arm services used remote clinical support. The median remote support time for these 14 sites for the whole intervention period was 38 minutes (IQR 16-112 minutes)

3. **Technical support** comprised helpdesk support provided by the software company for installation, assistance with user registration and password recoveries, software updates and any general issues with software performance. All of this support was provided by phone and remote desktop log in. The median technical support time for the whole intervention period for 28 sites with data available was 320 minutes (IQR 209-386 minutes)