Coronary artery disease (CAD) remains the leading cause of death among women in the United States. Prior research has demonstrated that women with CAD are typically older than men and have more risk factors, such as diabetes mellitus, hypertension, hyperlipidemia, obesity, and congestive heart failure. Despite these higher rates of CAD risk factors, women have less obstructive coronary artery disease than men. Whether these differences exist among women veterans in the veterans affairs healthcare system is unknown.

Methods and Results—Data on 85,936 veterans (3,181 women) undergoing initial cardiac catheterization between October 1, 2007, and September 30, 2012, were examined using the national veterans affairs Clinical Assessment Reporting and Tracking (CART) Program. Sex differences in demographics, indications, coronary anatomy, cardiac treatments, and outcomes were analyzed. Women veterans were younger (56.9 versus 63.0 years, \(P < 0.0001 \)) with fewer traditional cardiovascular risk factors, but with more obesity, depression, and posttraumatic stress disorder than men. Women had lower rates of obstructive coronary artery disease than men (22.6% versus 53.3%). Rates of procedural complications were similar in both genders. Adjusted outcomes at 1 year showed women had lower mortality (hazard ratio, 0.74; confidence interval, 0.60–0.92) and less all-cause rehospitalization (hazard ratio, 0.87; confidence interval, 0.82–0.93), but no difference in rates of unplanned percutaneous coronary intervention.

Conclusions—Women veterans undergoing catheterization are younger, have more obesity, depression, and posttraumatic stress disorder, less obstructive coronary artery disease, and similar long-term outcomes, compared with men. These findings suggest a significant portion of women veterans may have chest pain not attributable to obstructive coronary artery disease. Further research into possible causes, such as endothelial dysfunction or concurrent psychological comorbidities, is needed.

(Circ Cardiovasc Qual Outcomes. 2015;8:00-00. DOI: 10.1161/CIRCOUTCOMES.114.001613.)

Key Words: cardiac catheterization ▼ coronary artery disease ▼ outcomes research ▼ sex ▼ women
WHAT IS KNOWN

- Despite having less obstructive coronary artery disease than men, women have higher rates of cardiovascular risk factors and worse cardiovascular outcomes.
- It is not known whether these characteristics apply to women veterans undergoing cardiac catheterization in the VA healthcare system.

WHAT THE STUDY ADDS

- This national study demonstrates that women veterans undergoing cardiac catheterization in the VA system have higher rates of nonobstructive coronary artery disease or normal coronary arteries than men, even when presenting with acute coronary syndromes.
- Women veterans have a higher burden of obesity, depression, and posttraumatic stress disorder, fewer traditional cardiovascular risk factors, and similar 1-year outcomes compared with men.
- Chest pain in the absence of obstructive coronary disease is common in women veterans and may represent a complex interplay of psychological stressors and somatic disease, but further research is needed.

Using data from the national VA Clinical Assessment, Reporting, and Tracking (CART) Program, we sought to evaluate sex differences among veterans undergoing initial diagnostic catheterization in the VA. The specific aims of this study were to determine whether there were sex differences in (1) clinical characteristics and comorbidities, (2) coronary anatomy and treatment, and (3) procedural complications and long-term outcomes after diagnostic catheterization.

Methods

Launched in 2005, the VA CART Program is a national VA clinical quality program for coronary procedures conducted in all VA cardiac catheterization laboratories nationwide.2 A key feature of the CART Program is a clinical software application designed to collect data on catheterization laboratory procedures in a standardized fashion. The software is embedded in the VA electronic health record and allows providers to enter patient and procedural information for all cardiac catheterizations and percutaneous coronary interventions (PCI) as part of routine clinical workflow. Once data entry is complete, the data elements automatically populate a clinical database that supports quality assessment, quality improvement, and clinical research missions of the CART Program.

The CART software uses standardized definitions and features, such as pull-down menus, to ensure uniformity of data entry by different providers and in different catheterization laboratories. Core data elements conform to the definitions and standards of the American College of Cardiology’s National Cardiovascular Data Registry.21 Quality checks of the data are periodically conducted, and it has been shown to be complete, timely, and accurate.24 CART data are combined with longitudinal data in the VA patient electronic health record, including vital status, inpatient hospitalizations, clinic visits, pharmacy prescriptions and refills, and laboratory results. The data are also merged with VA claims data for veterans’ care for hospitalizations that occur outside the VA system. The Colorado Multiple Institutional Review Board approved this study.

Study Cohort

This study included data from all men and women veterans undergoing initial diagnostic catheterization between October 1, 2007, and September 30, 2012, at any of the 77 VA catheterization laboratories. Patients <18 years of age were excluded. All patients with a prior catheterization, PCI, or coronary artery bypass grafting (CABG) were excluded to evaluate the risk factor profile and subsequent care after the initial catheterization.

Exposure

Patient sex was determined from the CART database and VA patient treatment files.

Outcomes

Both peri-procedural and 1-year outcomes were assessed. Peri-procedural outcomes included in-laboratory complications and bleeding complications requiring transfusion. One-year outcomes included all-cause death, all-cause rehospitalization, rehospitalization for myocardial infarction (MI), unplanned catheterization, unplanned PCI, and unplanned CABG. In-laboratory complications were defined as access-site hematoma, dysrhythmia, hives, stroke, emergent PCI, acute respiratory distress, acute pulmonary edema, death, peri-procedural MI, acute cardiogenic shock, limb ischemia, anaphylactic shock, retroperitoneal hematoma, emergent CABG, or new cardiac tamponade.

Covariates

Patient demographic, clinical comorbidity, catheterization indication, coronary anatomy, and postprocedural treatment information were collected from the CART and VA patient data files. Demographic information included age, race, and Hispanic ethnicity. Race was defined as white, black, or African American, or other, which included American Indian or Alaska Native, Asian, Native Hawaiian, or other Pacific Islander. Racial and ethnic classifications were based on patient self-report, and the methodology for racial classification has been described elsewhere.25 Clinical comorbidity information included diabetes mellitus, hyperlipidemia, hypertension, chronic kidney disease, tobacco use, congestive heart failure, cerebrovascular disease, peripheral arterial disease, obesity, chronic obstructive pulmonary disease, posttraumatic stress disorder (PTSD), depression, sleep apnea, procedural indication, and Framingham risk. Obesity was defined as a body mass index ≥30. Framingham risk was calculated using methods previously described26 and was categorized by the 10-year predicted coronary heart disease risk as low (<10%), intermediate (10% to 20%), or high (≥20%). Indications for cardiac catheterization were collected from CART data and categorized into acute coronary syndrome (ACS), elective, or other. Elective indications included chest pain, stable angina, and positive functional study. Positive functional study was defined as any cardiac stress test that was suggestive of ischemia. Other indications for cardiac catheterization included valvular heart disease, cardiomyopathy, ischemic heart disease, cardiac transplant, cardiac tamponade, cardiogenic shock, coronary heart disease, heart failure, dysrhythmia, research study, and unknown.

Coronary anatomy was classified into obstructive CAD, nonobstructive CAD, or normal coronary arteries. In addition, the extent of CAD was classified into 1, 2, or 3- vessel distribution. In line with prior studies,25 obstructive CAD was defined as any coronary stenosis >70% in any epicardial artery or 50% in the left main coronary artery. Nonobstructive CAD refers to coronary stenosis that is ≥20%, but <70%, in any epicardial artery or ≥20%, but <50%, in the left main coronary artery. Normal coronary anatomy was defined as <20% stenosis in all coronary arteries. We then categorized patients as having single, double, or triple-vessel or left main obstructive disease. Vessel...
The cohort was further stratified and analyzed by indication (ACS, elective, or other). Continuous data were compared using Wilcoxon nonparametric tests and categorical data using Chi-square or Fisher’s exact tests, as appropriate.

Statistical analyses were performed using SAS software (version 9.4, SAS Institute, Cary, NC) and R 3.1.1 (R Core Team (2014)). All analyses were performed at the CART Coordinating Center, housed at the VA Eastern Colorado Healthcare System.

Results

Clinical Characteristics

A total of 82,755 males (96%) and 3181 (4%) women met criteria for inclusion in this analysis. The median age for women was 56.9 years and for men was 63.0 years ($P<0.0001$). Baseline demographics for the entire population revealed that women had fewer traditional cardiovascular risk factors than men, including hypertension, hyperlipidemia, diabetes mellitus, and tobacco use (Table 1). Notably, women veterans had higher rates of obesity, depression, and PTSD than men veterans (Table 1). The same findings were apparent when analyzed by race. Women in each racial group (white, black, and other) were younger, had lower rates of traditional cardiovascular risk factors (hypertension, hyperlipidemia, diabetes mellitus, and tobacco use), and higher rates of obesity, depression, and PTSD than their male counterparts.

Table 2 shows the demographics and clinical characteristics of veterans by indication for catheterization (ACS, elective, and other). Regardless of catheterization indication, women had lower rates of hypertension, hyperlipidemia, diabetes mellitus, and tobacco use than men. In each category, women had more obesity, depression, and PTSD than men. Among the entire cohort, women more commonly presented with chest pain as an indication for cardiac catheterization than men (52.1%, n=1656 versus 39.3%, n=32549, $P<0.0001$). Although stress testing was performed equally often in men and women, irrespective of indication for catheterization (Table 2), a relatively low percentage of patients presented for catheterization with the indication of positive functional study, and women were somewhat less likely to present with this indication than men (13.3%, n=423 versus 14.8%, n=12212, $P=0.023$).

Coronary Anatomy and Treatment

Women were found to have normal coronary arteries at the time of catheterization significantly more often than men (45.9% versus 17%, $P<0.0001$; Table 3). Rates of nonobstructive CAD were similar but women had less single and multivessel obstructive disease. Rates of treatment with PCI and medical therapy were lower in women (Table 3). Analysis

<table>
<thead>
<tr>
<th>Table 1. Demographics and Clinical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women (N=3181)</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Demographics</td>
</tr>
<tr>
<td>Age, median (IQR)</td>
</tr>
<tr>
<td>Hispanic, % (n)</td>
</tr>
<tr>
<td>Race: White, % (n)</td>
</tr>
<tr>
<td>Race: Black, % (n)</td>
</tr>
<tr>
<td>Race: Other, % (n)</td>
</tr>
<tr>
<td>Clinical Comorbidities</td>
</tr>
<tr>
<td>Obese, % (n)</td>
</tr>
<tr>
<td>BMI, median (IQR)</td>
</tr>
<tr>
<td>Hypertension, % (n)</td>
</tr>
<tr>
<td>Hyperlipidemia, % (n)</td>
</tr>
<tr>
<td>Diabetes mellitus, % (n)</td>
</tr>
<tr>
<td>Depression, % (n)</td>
</tr>
<tr>
<td>Congestive heart failure, % (n)</td>
</tr>
<tr>
<td>Cerebrovascular disease, % (n)</td>
</tr>
<tr>
<td>Prior myocardial infarction (MI), % (n)</td>
</tr>
<tr>
<td>COPD, % (n)</td>
</tr>
<tr>
<td>Chronic kidney disease, % (n)</td>
</tr>
<tr>
<td>Family history of CAD, % (n)</td>
</tr>
<tr>
<td>Peripheral vascular disease, % (n)</td>
</tr>
<tr>
<td>PTSD, % (n)</td>
</tr>
<tr>
<td>Sleep apnea, % (n)</td>
</tr>
</tbody>
</table>

BMI indicates body mass index; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; IQR, interquartile range; and PTSD, posttraumatic stress disorder.

distribution was classified into the left anterior descending and its branches, the left circumflex artery and its branches, and the right coronary artery and its branches. Postprocedural treatments included PCI, CABG, or medical therapy. PCI that occurred on the same day as the initial catheterization or as part of a staged PCI were considered part of the treatment episode and not counted as an outcome. CABG that occurred within 30 days of the index catheterization, without chest pain as an indication for cardiac catheterization than men (52.1%, n=1656 versus 39.3%, n=32,549, $P<0.0001$). Although stress testing was performed equally often in men and women, irrespective of indication for catheterization (Table 2), a relatively low percentage of patients presented for catheterization with the indication of positive functional study, and women were somewhat less likely to present with this indication than men (13.3%, n=423 versus 14.8%, n=12,212, $P=0.023$).

Statistical Analyses

Patient demographics and clinical characteristics, procedural indications, presence of coronary stenoses, pharmacological treatment, and revascularization procedures were collected and compared by sex. The cohort was further stratified and analyzed by indication (ACS, elective, or other). Continuous data were compared using Wilcoxon nonparametric tests and categorical data using Chi-square or Fisher’s exact tests, as appropriate.

Unadjusted rates of peri-procedural and 1-year outcomes were calculated and compared using Kaplan–Meier curves. To evaluate adjusted differences in 1-year outcomes for men and women after initial cardiac catheterization, a Cox proportional hazards model was fitted for each of 6 outcomes, adjusted using the covariates listed earlier and including an interaction between sex and indication for catheterization to assess sex differences by indication category. Spline terms were included in the models to account for the nonlinearity of age. For all outcomes, patients were censored on death or at 1 year if they did not experience an event. Crude and adjusted estimates of the hazard ratios for women compared with men were calculated. Data were complete for all covariates with the exception of obesity, which resulted in exclusion of 920 (1.1%) patients. These patients were excluded from both adjusted and unadjusted models. Adjustment for the peri-procedural outcomes was not performed because of low numbers of events. Sex differences in clinical characteristics were also assessed by stratifying the cohort by race (white, black, and other).

Statistical analyses were performed using SAS software (version 9.4, SAS Institute, Cary, NC) and R 3.1.1 (R Core Team (2014)). All analyses were performed at the CART Coordinating Center, housed at the VA Eastern Colorado Healthcare System.
by race (white, black, and other) showed that women in all groups had less obstructive CAD and were less likely to be treated with PCI or medications (β-blockers, statins, clopidogrel or prasugrel, and long-acting nitrates).

When differentiated by indication for catheterization (Table 4), women continued to have higher rates of normal coronaries than men (19.2% versus 5.0%, P<0.0001, in the ACS group). Among patients with ACS, women had similar rates of single-vessel coronary disease, and higher rates of nonobstructive and normal coronaries, compared with men. Women had less 2-vessel and 3-vessel or left main CAD than men, regardless of the indication for catheterization, and had less treatment with PCI. At discharge, women were less likely to receive treatment with β-blockers, statins, and antiplatelet agents (clopidogrel or prasugrel), even among patients presenting with ACS (Table 4).

Outcomes
In-laboratory complications were similar among all women and men veterans (1.5% versus 1.6%, p=NS). Women were
Table 3. Coronary Anatomy, Postprocedural Medications, and Unadjusted Outcomes

<table>
<thead>
<tr>
<th>Coronary anatomy and treatment</th>
<th>Women (N=3181)</th>
<th>Men (N=82755)</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Vessel/left main obstructive, % (n)</td>
<td>4.5 (142)</td>
<td>17.1 (14132)</td>
<td><0.0001</td>
</tr>
<tr>
<td>2-Vessel Obstructive, % (n)</td>
<td>5.3 (170)</td>
<td>14.3 (11842)</td>
<td><0.0001</td>
</tr>
<tr>
<td>1-Vessel Obstructive, % (n)</td>
<td>12.8 (407)</td>
<td>21.9 (18103)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-Obstructive, % (n)</td>
<td>28.7 (913)</td>
<td>27.2 (22482)</td>
<td>0.5653</td>
</tr>
<tr>
<td>Normal, % (n)</td>
<td>45.9 (1461)</td>
<td>17 (14108)</td>
<td><0.0001</td>
</tr>
<tr>
<td>PCI-Treatment, % (n)</td>
<td>11.7 (372)</td>
<td>21.8 (18070)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Postprocedural Medications

Beta-blocker, % (n)	55.5 (1764)	70.5 (58337)	<0.0001
Statin, % (n)	57.3 (1823)	71.2 (58907)	<0.0001
Clopidogrel, prasugrel, % (n)	16.8 (533)	32.1 (26540)	<0.0001
Long-acting Nitrate, % (n)	24.1 (768)	31.3 (25902)	<0.0001
Calcium channel blocker, % (n)	23 (733)	22.9 (18974)	0.8795

| Procedural complications | Unadjusted 1-year outcomes | | |
|--------------------------|---------------------------|----------------|
| Death, % (n) | 2.7 (86) | 5.6 (4668) | <0.0001 |
| Rehospitalization All-Cause, % (n) | 30.6 (973) | 41.5 (34383) | <0.0001 |
| Rehospitalization for MI (day 15-1yr), % (n) | 0.8 (24) | 1.2 (352) | 0.0387 |
| Repeat Catheterization, % (n) | 7.5 (239) | 11.8 (9776) | <0.0001 |
| Unplanned PCI, % (n) | 3 (95) | 5.7 (4698) | <0.0001 |
| Unplanned CABG, % (n) | 1.3 (40) | 5.1 (4227) | <0.0001 |

Discussion

This is the first study of national VA data to investigate sex differences in the clinical characteristics, treatment, and outcomes of women undergoing cardiac catheterization. Our results show that women veterans had fewer classic CAD risk factors than men but higher rates of obesity, depression, and PTSD. Women more often presented with chest pain as an indication for catheterization than men. Furthermore, women veterans had lower rates of obstructive CAD, similar or lower rates of procedural complications, and lower 1-year death and all-cause rehospitalization rates, regardless of catheterization indication. These findings suggest that the clinical presentation that prompts referral of women veterans to VA catheterization laboratories is not as attributable to obstructive CAD as men. Accordingly, exploration of other causes for women’s clinical presentation, such as endothelial dysfunction or concurrent psychological comorbidities, should occur.

Our findings both contradict and confirm prior studies of women and cardiovascular disease in several important ways. In contrast to the general population, in which women are typically older and have more cardiovascular risk factors than men, women veterans were younger and had fewer conventional risk factors. In addition, women veterans had higher rates of depression and PTSD than men veterans, highlighting mental health as a potential risk factor for CAD and adverse outcomes. Depression, anxiety, and other psychological disorders can also manifest physical symptoms, such as chest pain, even in the absence of CAD. Because depression and PTSD are associated with decreased quality of life, persistent chest pain, increased cardiovascular risk, and worse cardiovascular outcomes, the high rates observed in the veteran population clearly warrant attention.

Similar to studies in civilian populations, women veterans have less obstructive CAD than men. Women had normal coronary arteries more often than men, regardless of catheterization indication. In the ACS population, women were also more likely to have nonobstructive CAD and less multivessel disease. Possible reasons for less obstructive disease in women with cardiac symptoms have been explored, including disorders of the coronary microvasculature and endothelial dysfunction. Studies have shown that PTSD is associated with chest pain and that there is an association between PTSD and subsequent development of CAD, although this association has not been studied in women veterans specifically. Postulated mechanisms include sympathetic activation, which may over time result in cardiac autonomic dysfunction. However, the low diagnostic yield of cardiac catheterization among women veterans might also indicate that screening and referral for catheterization needs improvement. Additional research is needed to better understand the referral
patterns at the VA; unfortunately, details about the description and nature of chest pain were not available in the current study. In addition, information about stress test results was not available. Efforts are ongoing to capture this important information in VA patients, and future studies will be able to provide insight into catheterization referral patterns. Additional research is also needed to determine why women veterans with cardiac signs or symptoms have less obstructive disease, and what potential treatments can effectively address their symptoms because it is known that women without obstructive CAD frequently have persistent chest pain asso- ciated with increased healthcare costs, rehospitalization, and adverse cardiovascular outcomes, including higher rates of MI and mortality.

Outcomes for women veterans after diagnostic catheterization were similar or better compared with men veterans. Women had lower mortality at 1 year, even when adjusted for age, presence of obstructive disease, and multiple comorbidities. This is in contrast to some prior research that has indicated that women have worse outcomes than men, but studies are conflicting. Although our findings seem reassuring, caution is needed when interpreting these results. Because women have significantly less obstructive CAD than men, but similar rates of rehospitalization for MI and unplanned PCI at 1-year, this may indicate that the presence of nonobstructive disease carries a significant healthcare burden.

This study has important clinical implications, not only for practitioners who will care for increasing numbers of women

Table 4. Coronary Anatomy, Postprocedural Medications, and Unadjusted Outcomes by Indication

<table>
<thead>
<tr>
<th>Coronary anatomy and treatment</th>
<th>ACS</th>
<th>Elective</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women (N=401) Men (N=14,052)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men (N=2132) Men (N=46,309)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women (N=648) Men (N=22,394)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Vessel/left main obstructive, % (n)</td>
<td>11.2 (45)</td>
<td>26.8 (3772)</td>
<td><0.0001</td>
</tr>
<tr>
<td>2-Vessel obstructive, % (n)</td>
<td>13.5 (54)</td>
<td>22.8 (3202)</td>
<td><0.0001</td>
</tr>
<tr>
<td>1-Vessel obstructive, % (n)</td>
<td>31.2 (125)</td>
<td>32.2 (4527)</td>
<td>0.6591</td>
</tr>
<tr>
<td>Nonobstructive, % (n)</td>
<td>22.7 (91)</td>
<td>11.7 (1645)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Normal, % (n)</td>
<td>19.2 (77)</td>
<td>5 (699)</td>
<td><0.0001</td>
</tr>
<tr>
<td>PCI treatment, % (n)</td>
<td>38.2 (153)</td>
<td>48.1 (6764)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Postprocedural medications

Beta-blocker, % (n)	74.3 (298)	83.3 (11,708)	<0.0001
Statin, % (n)	74.6 (299)	84.2 (11,838)	<0.0001
Clopidogrel, prasugrel, % (n)	50.4 (202)	63.6 (8933)	<0.0001
Long-acting Nitrate, % (n)	44.9 (180)	49.4 (6940)	0.0755
Calcium channel blocker, % (n)	21.9 (88)	21.1 (2963)	0.6776

Procedural complications

| In-laboratory complications, % (n) | 2.5 (10) | 1.9 (261) | 0.3543 |
|Transfusion within 30 days, % (n) | 8 (32) | 10.1 (1418) | 0.1653 |

Unadjusted 1-year outcomes

Death, % (n)	3.2 (13)	9.4 (1320)	<0.0001
Rehospitalization all-cause, % (n)	37.7 (151)	42.5 (5968)	0.0543
Rehospitalization for MI (day 15-1 year), % (n)	2.7 (11)	2.6 (359)	0.3138
Repeat catheterization, % (n)	17.2 (69)	18.6 (2615)	0.4764
Unplanned PCI, % (n)	8.5 (34)	11.2 (1580)	0.083
Unplanned CABG, % (n)	1.2 (5)	3.8 (527)	0.0087

ACS indicates acute coronary syndrome; CABG, coronary artery bypass grafting; MI, myocardial infarction; and PCI, percutaneous coronary intervention.
veterans at both VA and non-VA facilities, but also for providing insight into the pathophysiology of CAD in women. Efforts are needed to better understand why women experience chest pain in the absence of obstructive CAD. The optimal method of diagnosis and therapy for patients with chest pain in the absence of obstructive CAD warrants increased attention; greater emphasis on noninvasive testing methods, such as CT coronary angiography, may be indicated. Finally, the interplay between psychological factors and the presence of chest pain merits further research. As the population of women veterans continues to age and develop additional cardiac risk factors, rates of obstructive CAD and associated complications may rise.

This is the first nationwide study of women veterans undergoing cardiac catheterization. VA CART data are an optimal means of capturing this data; however, several limitations deserve consideration. First, although CART data have been shown to be highly accurate, misclassification may still occur, and more detailed information regarding stress testing types and results was not available. In addition, detailed symptom description, biomarker, and EKG data were not available. In the absence of this granular data, we were unable to explore possible predictors of obstructive or nonobstructive CAD. Second, there is potential for overfitting of the Cox models of long-term outcomes, particularly for rehospitalization caused by MI because of lower event rates in this group. Third, the cause of death could not be separated into cardiac-specific mortality because this is not collected in VA data sets. Additional variables, such as aspirin use and left ventricular ejection fraction, were also not available. Finally, the groups of men and women were significantly different in terms of age and clinical demographics. As a result of these large differences, the use of regression adjustment may not have been sufficient to account for the residual confounding effect of age and other clinical differences. Therefore, these findings should be interpreted accordingly.

Conclusions

This is the first study of national VA data to investigate sex differences in the clinical characteristics, treatment, and outcomes of veterans undergoing cardiac catheterization. Our results show that women veterans had fewer classic CAD risk factors than men but higher rates of obesity, depression, and PTSD. Furthermore, women veterans had lower rates of obstructive CAD, similar or lower rates of procedural complications and subsequent rehospitalization, and lower 1-year death rates, regardless of catheterization indication. These findings suggest that the clinical presentation that prompts referral of women veterans to VA catheterization laboratories is not as attributable to obstructive CAD as it is in men. Accordingly, exploration of other causes for women’s clinical presentation, such as endothelial dysfunction or concurrent psychological comorbidities, should occur. Further investigation into the reasons behind these findings and application of those insights into effective treatments could potentially address some of the sex differences noted in nonveteran cardiac populations.
Disclosures
None.

References

Characteristics and Outcomes of Women Veterans Undergoing Cardiac Catheterization in the Veterans Affairs Healthcare System: Insights from the VA CART Program
Melinda B. Davis, Thomas M. Maddox, Paula Langner, Mary E. Plomondon, John S. Rumsfeld and Claire S. Duvernoy

Circ Cardiovasc Qual Outcomes, published online February 24, 2015;
Circulation: Cardiovascular Quality and Outcomes is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7705. Online ISSN: 1941-7713

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/early/2015/02/24/CIRCOUTCOMES.114.001613

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/