Clinical Prediction Models for Cardiovascular Disease
Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database

Benjamin S. Wessler, MD; Lana Lai YH, MA; Whitney Kramer, MA; Michael Cangeloisi, MA, MPH; Gowri Raman, MD; Jennifer S. Lutz, MA; David M. Kent, MD, CM, MSc

Background—Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described.

Methods and Results—We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration.

Conclusions—There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood.

(Circ Cardiovasc Qual Outcomes. 2015;8:00-00. DOI: 10.1161/CIRCOUTCOMES.115.001693.)

Key Words: cardiovascular diseases ▪ cerebrovascular disorders ▪ individualized medicine ▪ logistic models ▪ prognosis

Clinical predictive models (CPMs) use multiple patient characteristics to estimate the probability of important outcomes over a given period of time (prognostic models), or the probability of a specific diagnosis (diagnostic models). By providing these probabilities, they enable clinicians to personalize medical decisions for individual patients.1

Editorial see p 332

Although the potential importance of making decisions more patient-centered is broadly recognized, implementation of predictive models in clinical practice has remained meager, even while CPM development has been robust.1 Despite many attempts, application is limited by poor statistical performance with respect to discrimination and (especially) calibration on new populations; examples where no clear decision was influenced by the CPM output (or performance poorly fit to the appropriate decision threshold); limits related to usability; and the inability to incorporate a dynamic set of clinical variables.2–5 Several developments in healthcare, however, may create a more favorable environment for the dissemination and application of CPMs, such that these tools may play an increasingly important role in healthcare decision making over the next decade. These include (but are not limited to): an increasing appreciation of the limitations of using group-derived averages for informing practice guidelines for the care of individuals; recent efforts to formalize methodological and reporting principles for prediction models6–7; the investment of more resources in patient-centered outcomes research (particularly through PCORI), the methodological emphasis of PCORI on heterogeneity of treatment effect8,9; and the incorporation of risk models within some evidence-based guidelines.10–11

Received January 13, 2015; accepted May 4, 2015.
From the Division of Cardiology, Tufts Medical Center, Boston, MA (B.S.W.); Predictive Analytics and Comparative Effectiveness (PACE) Center, Institute for Clinical Research and Health Policy Studies (ICRHPS), Tufts Medical Center/Tufts University School of Medicine, Boston, MA (B.S.W., L.L.Y., J.S.L., D.M.K.); Business Intelligence and Analytics, Iora Health, Cambridge, MA (W.K.); Health Economics and Reimbursement, Boston Scientific, Marlborough, MA (M.C.); and Center for Clinical Evidence Synthesis, ICRHPS, Medical Center/Tufts University School of Medicine, Boston, MA (G.R.).

Correspondence to David M. Kent, MD, MS, Predictive Analytics and Comparative Effectiveness (PACE) Center, Institute of Clinical Research and Health Policy Studies (ICRHPS), Tufts Medical Center (TMC), 800 Washington St, Box 63, Boston, MA 02111. E-mail dkent1@tuftsmedicalcenter.org

© 2015 American Heart Association, Inc.

Circ Cardiovasc Qual Outcomes is available at http://circoutcomes.ahajournals.org

DOI: 10.1161/CIRCOUTCOMES.115.001693
WHAT IS KNOWN

- Clinical predictive models (CPMs) estimate the probability of clinical outcomes.
- CPMs hold the potential to personalize clinical care decisions.

WHAT THE STUDY ADDS

- There are numerous CPMs available for a variety of cardiovascular diseases.
- There is substantial redundancy of CPMs in the literature.
- We present a novel database that indexes and characterizes CPMs for cardiovascular disease.

To better understand the extent of CPM development and to help researchers in this emerging field, we performed a systematic review and field synopsis to describe the CPMs that predict measures of morbidity and mortality for patients at risk for and with known cardiovascular disease (CVD). Here, we describe the Tufts Predictive Analytics and Comparative Effectiveness (PACE) CPM database.

Methods

Study Search and Selection

Our search was designed to capture CPMs developed using data from contemporary cohorts of patients. We performed a PubMed search for English-language articles containing CPMs for CVD published from January 1990 to May 2012. To supplement this search, we reviewed reference lists of published reports and an iterative process to ensure completeness of the database (Figure 1). CVD include coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. To construct a comprehensive set of search terms we generated a list of MeSH terms with the input of experienced methodologists (Appendix I in the Data Supplement).

For this registry, a CPM is defined as a model that provides a method to calculate or categorize an individual patient’s absolute risk for a binary outcome. We include articles that describe newly developed CPMs that predict the risk of developing an outcome (prognostic models) or the probability of a specific diagnosis (diagnostic models). We include articles describing CPMs of patients at risk for developing incident CVD and also CPMs for patients with known CVD that predict the likelihood of developing a binary outcome (eg, myocardial infarction, stroke, death, or composite end point). Articles met the following inclusion criteria: (1) the primary aim was to develop a CPM as indicated in an objective statement; (2) the model predicts binary clinical end points; (3) the model contains at least 2 independent (ie, predictor) variables, and (4) the model provides a way of calculating a probability for an individual patient. Articles were excluded if they did not provide enough information to estimate a patient’s risk, reported models predicting surrogate outcomes, or reported models derived from pediatric or adolescent populations. Articles with the primary aim to validate, update, or compare already established models without an effort to develop and report a new model were excluded. The recalibration models included in this database include only those presented as part of articles with the primary goal of reporting a de novo model. We also excluded pharmacology reports, cost-effectiveness models, decision-analysis models, non-English reports, models evaluating a biomarker or surrogate outcome, narrative and systematic reviews, and editorials.

Data Extraction

Typically, models in the form of online calculators, nomograms, simplified equations, or point scores met our inclusion criterion. We placed CPMs into one of the following stages of development (1) de novo, (2) recalibration, or (3) adaptation CPM (Table 1). De novo CPMs are defined as newly derived CPMs that report a method to calculate an individual’s absolute risk for a binary outcome. Recalibration CPMs report previously described models with a revised intercept or slope to better fit a new population. Although some authors have included less conservative approaches as model updates, we classified models with re-estimated β-coefficients or the addition of new predictor variables to a previously developed CPM as de novo CPMs. Adaptation CPMs are reports of previously described CPMs revised to predict a different outcome—that is, the previous risk equation is evaluated to predict an outcome for which it was not originally developed. CPMs stratified on the basis of sex were reported separately for this analysis.

We extracted CPM information and entered data directly into a newly developed database using Microsoft Access 2007. Blinded double extractions of CPM stage of development were performed for all included articles to ensure consistency of extracted data; discrepancies were discussed to arrive at a consensus. Full blinded double extractions were done of a random 10% sample of articles as a quality check. For each model, we extracted: author names and affiliations, year of publication, journal name, study design, methods for model development, sample size, enrollment period, and information on the patient population and the predicted outcomes. Study design was categorized as either observational studies (cohort, case-control, cross-sectional, surveys, and claims data) or experimental studies (randomized controlled trials). Methods for model derivation were characterized. Populations were grouped based on index condition. Populations at risk for developing incident CVD were classified with the index condition of population sample. Outcomes were categorized as mortality, morbidity, or morbidity and mortality. The latter 2 groupings most often represented composite outcomes. The follow-up period was categorized as short (<3 months), moderate (>3 to <6 months), or long (>6 months). We identified covariates and extracted β-coefficients, hazard ratios, odds ratios, relative risk ratios, P Values, and intercepts.

Assessment of Model Performance

CPM performance is frequently evaluated through measures of discrimination and calibration. Discrimination represents how effectively a CPM can separate those who develop the outcome of interest from those who do not, whereas calibration measures how well predicted probabilities match observed probabilities. For each model, we characterized measures of discrimination (areas under the curve, equivalent to c-statistic for logistic regression models) as well as calibration performance (eg, calibration plot and Hosmer–Lemeshow statistic).

![Figure 1. PubMed was searched for relevant articles from 1990 to 2012. CAD indicates coronary artery disease; CHF, congestive heart failure; MISC, a variety of other index conditions no other characterized; and VTE, venous thromboembolism.](image-url)
Results

Model Descriptions

We identified 506 articles describing 796 CPMs (Figure 1). For the quality check, blinded double extractions for model designation demonstrated excellent agreement (κ=0.90). At the article level, there was 97% agreement for identification of both a c-statistic and presence or absence of a calibration plot. Of the CPMs included in this database, 717 (90.1%) are de novo CPMs, 21 (2.6%) are recalibration CPMs, and 58 (7.3%) are adaptation CPMs. During the time period 1990 to 2012, the number of articles reporting CPMs published each year has increased steadily over time (Figure 2). There are only 3 models from 1990 included in this database while in 2011, 53 models were published. This represents a 17-fold increase in the number of models for CVD published annually over this time period. CPMs for CVD are published in a wide variety of journals and most commonly published in specialty journals (Table 2). Circulation published 42 (8.3%) and Journal of American College of Cardiology published 31 (6.1%) of the articles included in this database. CPMs were most likely to be published using US healthcare data (35.5%). The next most common data sources were British (5.3%) and Canadian (4.5%) healthcare data.

CPMs exist for a wide spectrum of CVDs. There are 31 index conditions represented in this database and 77 distinct index condition/outcome pairings. The 10 most frequently studied index conditions are shown in Figure 3. There are 215 CPMs for patients with known coronary artery disease (CAD) followed by 168 CPM for population samples and 79 models for heart failure. For the entire database, sample sizes ranged from 17 patients for a CPM predicting mortality in patients with aortic diseases to 2.8 million patients for a CPM predicting morbidity of a population sample. Mean age ranged from 27 to 88 years. Length of follow-up ranged from <1 week to 28 years. Models were roughly evenly split between those predicting short-term outcomes (<3 months) and those predicting long-term outcomes (>6 months). There are 41 diagnostic CPMs included in this database, most commonly predicting diagnoses of CAD (11 models), venous thromboembolic disease (10 models), and acute coronary syndrome (5 models).

CPMs were derived from a variety of data sources. Three hundred twenty-one of the articles (63%) derived CPMs from cohort studies, 98 (19%) used registry data and 49 (10%) used randomized controlled trial data. All studies reported a point score, equation, decision tree, nomogram, or online calculator that could be used to calculate risk (because this was an inclusion criteria for the database). Three hundred ninety-nine (50%) of models reported their β-coefficients. The most commonly predicted outcome was mortality (37%) followed by the outcome classifications of morbidity (32%) and composite outcomes representing morbidity and mortality (27%).

The de novo CPMs provide an opportunity to evaluate newly developed models. Four hundred twenty-one (58%) of the de novo CPMs were derived using logistic regression methods and 246 (34%) were created using Cox regression.

Table 1. Model Classification and Discrimination

<table>
<thead>
<tr>
<th>Model Stage</th>
<th>Description</th>
<th>n</th>
<th>c-Statistic (median)</th>
<th>25th %–75th %</th>
</tr>
</thead>
<tbody>
<tr>
<td>De novo</td>
<td>Newly developed model or previously developed model + extension with additional predictors (re-estimated covariates)</td>
<td>450</td>
<td>0.78</td>
<td>0.73–0.82</td>
</tr>
<tr>
<td>Recalibration</td>
<td>Previously developed model with a change of intercept and or slope</td>
<td>21</td>
<td>0.78</td>
<td>0.74–0.79</td>
</tr>
<tr>
<td>Adaptation</td>
<td>Previously developed model used to calculate probability of an alternative outcome</td>
<td>58</td>
<td>0.81</td>
<td>0.77–0.84</td>
</tr>
</tbody>
</table>

Classification of Model Stage for the Tufts clinical prediction model database. This framework is an adaptation of the classification scheme presented by Steyerberg. n is the number of models that report a c-statistic for each stage. The median c-statistic for each stage of development is noted along with the interquartile range (25th %–75th %).

Figure 2. Cumulative growth in published clinical prediction model (CPM) articles included in the Tufts CPM database over time. Our search ended in May 2012.
The remainder of the de novo CPMs in this database were created using a variety of other statistical techniques (Table 3). De novo CPMs predicting mortality were most commonly published for patients with known CAD (98 models) followed by heart failure (63 models) and stroke (24 models; Table 4). CPMs predicting composite outcomes representing morbidity and mortality were most frequently developed for population samples (68 models) followed by patients with CAD (43 models) and stroke (13 models; Table 5). For the 10 index/outcome pairings most frequently studied, 84 (17%) did not report the number of events in the derivation cohort (Table 6). For the de novo CPMs that did report the number of events, there was a wide range of events per variable.

The most common covariates stratified based on index/outcome pairings are shown in Table 7. For 9 of the 10 pairings (all except venous thromboembolism), age is among the most common variables used for risk prediction, whereas sex is among the most common in 7 of 10 of the pairings. Other common risk factors for developing atherosclerotic CVD, such as diabetes mellitus and smoking status, are also frequently seen across multiple index conditions.

Model Performance Measures

Of the 717 de novo CPMs, 450 (63%) report a c-statistic. Two hundred eighty (70.5%) of CPMs derived using logistic regression techniques report a c-statistic and 130 (55.3%) of the CPMs derived using Cox regression methods report a c-statistic.

Two hundred fifty-nine (36%) of the de novo CPMs report either the Hosmer–Lemeshow statistic or show a calibration plot, 68 (26%) report both these measures of calibration.

Although this database focuses on articles with the primary goal of developing CPMs, 176 (22%) of the included CPMs...
describe an internal validation exercise (including testing on random and nonrandom subset of the same overall cohort) and 135 (17%) report validation on a population sample separate from the derivation sample. We identified 27 (3%) CPMs that present model-to-model comparisons.

Discussion

Here, we describe the newly created Tufts PACE Center CPM registry. Our database is the first broad systematic review and field synopsis of CPMs for CVD. The goals of this registry are (1) describe the growth and characteristics of published CPMs for CVD, (2) identify gaps in CPM development, (3) examine the changes in reporting following publication of reporting standards, and (4) create a resource for researchers in the emerging field of CPM creation, evaluation, and application. We document an abundance of CPMs for virtually every major disease category and most important clinical outcomes. The field of CPMs for CVD has grown rapidly; the number of new CPMs published annually has approximately doubled over each of the past 2 decades. Continued growth over the same trajectory would clearly produce an overwhelming number of models.

Although the clinical emphasis of the CPMs identified in this database follows reasonably from the overall prevalence of the component diseases and models for at risk populations hold promise to raise awareness and focus prevention toward at risk groups, there seems little justification for the abundance of CPMs. Our database shows that published CPMs for CVD have been incompletely evaluated. In many areas, there is already tremendous redundancy of predictive models (there are >200 CPMs predicting clinical outcomes for patients with CAD and >160 models predicting incident CVD), with little apparent effort for independent comparison of extant models to provide guidance on which models work best in which context.

A recent systematic review found 20 studies examining the comparative performance of population-based CVD prognostic models, but emphasized the limitations of this literature. Thus, substantial work is needed to understand how these competing CPMs compare and how they can best be applied to individualize care. We agree with previous calls for comparative studies carried out in independent samples, ideally by investigators independent from those who proposed or developed the models.

Consistent with what has been reported by others looking at different clinical fields, measures of model performance are variably reported in this database. Although evaluation of model reporting was not a primary focus of this field synopsis, the overall picture for predictive modeling for CVD seems not dissimilar from prognosis research in many other disciplines where there has been little standardization, variable reporting, and as a result little impact on personalizing care. We note a wide range of events per variable for the CPMs in this database raising the possibility that a substantial number of models are at risk of model overfitting. Fortunately, recent efforts are underway to improve how this research is performed and reported.

There are 2 groups that have come together to organize and standardize the reporting of clinical predictive models. These efforts emerge from the current state of modeling research, where the impact of this work falls short of the promise of these tools. The Prognosis research strategy (PROGRESS) group has outlined the methods that are used with predictive research in general and predictive models in particular. This group has identified many

Table 3. Methods Used to Derive De Novo Clinical Predictive Models

<table>
<thead>
<tr>
<th>De Novo CPMs</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>421</td>
</tr>
<tr>
<td>Cox regression</td>
<td>246</td>
</tr>
<tr>
<td>Weibull accelerated failure time model</td>
<td>17</td>
</tr>
<tr>
<td>Classification and regression tree analysis</td>
<td>15</td>
</tr>
<tr>
<td>Others</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>714</td>
</tr>
</tbody>
</table>

Methods used to derive de novo models as reported by the authors. Three de novo CPMs included in this database did not describe the methods used. Other methods include ensemble classification using machine learning, discriminant analysis, cluster algorithms, clinical judgment/consensus, neural network, and poisson regression techniques. CPM indicates clinical predictive model.

Table 4. De Novo Prognosis Models With Mortality as Outcome

<table>
<thead>
<tr>
<th>Index Condition</th>
<th>n</th>
<th>Short Time Frame</th>
<th>Moderate Time Frame</th>
<th>Long Time Frame</th>
<th>Published Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary artery disease</td>
<td>98</td>
<td>58</td>
<td>7</td>
<td>33</td>
<td>1990–2012</td>
</tr>
<tr>
<td>CHF</td>
<td>62</td>
<td>17</td>
<td>3</td>
<td>42</td>
<td>1992–2012</td>
</tr>
<tr>
<td>Stroke</td>
<td>27</td>
<td>16</td>
<td>5</td>
<td>6</td>
<td>1991–2011</td>
</tr>
<tr>
<td>Cardiac surgery</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>1995–2011</td>
</tr>
<tr>
<td>Aortic diseases</td>
<td>19</td>
<td>15</td>
<td>1</td>
<td>3</td>
<td>1994–2011</td>
</tr>
<tr>
<td>Population sample</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1991–2009</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1991–2011</td>
</tr>
<tr>
<td>VTE</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2005–2009</td>
</tr>
<tr>
<td>Chest pain</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1991–2000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2002–2011</td>
</tr>
</tbody>
</table>

De novo Prognosis Models with Mortality as Outcome. Top 10 index conditions are included. n indicates total count of models, outcomes are predicted over short time frame (<3 mo), moderate time frame (3–6 mo), and long time frame (>6 mo). Miscellaneous represents a variety of other conditions. CHF indicates congestive heart failure; and VTE, venous thromboembolism.
ways to improve the impact of this work. More recently, the Transparent Reporting of a Multivariable Model for Individual Prognosis Or Diagnosis (TRIPOD) statement was published, providing a checklist of 22 items that are considered crucial to effectively reporting CPMs. These groups and their reports take important steps toward focusing the research community and outlining ways that the results of this research can be effectively evaluated so that these tools might improve decision making. Moving forward the major cardiovascular journals should require that CPMs conform to the standards outlined in the TRIPOD statement before publication.

Another cause for optimism is the wider availability of large data sets and the changing culture of data sharing. These efforts hold the promise not only for the development of CPMs but also for their independent testing. Although data sharing is in its infancy, there is significant potential for informational return on previous research investments and these efforts will surely increase the quality and testing of CPMs. By centralizing efforts and becoming more transparent (and rigorous) about CPM assessment, we can minimize duplicative research that has little effect on patient-centered outcomes.

Our review has several limitations. Our summary presumably substantially underestimates the number of developed CPMs. Models were excluded, for example, when they did not predict a clinical outcome measure (e.g., prediction of infarct artery location, positive biomarker status, etc.) or provide an intercept which would permit calculation of a probability. We also do not capture articles that report exclusively on model validation. Finally, we did not formally assess reporting of all items in the recent TRIPOD statement because this was developed well after the database was created and the focus of this review was describing the extent of the literature, not assessing reporting quality.

Nevertheless, our review underscores the disparity between the wide availability of CPMs in the literature and their limited diffusion into real world practice. Barriers including poor statistical performance for new populations; lack of a clear decision to be influenced by the CPM output; poor usability; and the reality of a dynamic sets of clinical variables all limit...
Conclusion

We report here the methods and initial description of the Tufts PACE CPM database. We describe a rapidly growing body of CPMs for CVD. Although there are several models available for the most common disease processes, these models are incompletely evaluated and reported. Significant work is needed to best understand how these CPMs can be used to improve and individualize research and clinical care.

Sources of Funding

This work was partially supported through a Patient-Centered Outcomes Research Institute (PCORI) Pilot Project Program Award (IP2P10007222), as well as by the National Institutes of Health (U01NS086294, T32HL069770, and UL1 TR001064).

Disclosures

None.

References

Table 7. De Novo Models: Most Common Index Condition/Ou tcome Pairings and Predictor \nVariables

<table>
<thead>
<tr>
<th>Index/Outcome Pairing</th>
<th>n (models)</th>
<th>Most Common Covariate Variables (Top 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD and mortality</td>
<td>98</td>
<td>EKG findings, Age, LVEF, DM, HR and Sex*</td>
</tr>
<tr>
<td>Population sample and morbidity and mortality</td>
<td>67</td>
<td>HDL, Smoking, Age, DM, SBP</td>
</tr>
<tr>
<td>CHF and mortality</td>
<td>62</td>
<td>BUN, Age, NIHYA, HR, LVEF</td>
</tr>
<tr>
<td>Population sample and morbidity</td>
<td>62</td>
<td>Age, DM, Smoking, SBP, BMI</td>
</tr>
<tr>
<td>CAD and mortality</td>
<td>51</td>
<td>DM, Sex, Age, Smoking, EKG findings</td>
</tr>
<tr>
<td>CAD and morbidity and mortality</td>
<td>44</td>
<td>Age, EKG findings, DM, Sex, LVEF</td>
</tr>
<tr>
<td>Stroke and morbidity and mortality</td>
<td>27</td>
<td>Age, GCS score, NIHSS, Previous stroke, Sex</td>
</tr>
<tr>
<td>Stroke and mortality</td>
<td>27</td>
<td>Age, NIHSS, GCS score, Intracerebral hemorrhage volume, Sex</td>
</tr>
<tr>
<td>Cardiac surgery and mortality</td>
<td>24</td>
<td>Age, Sex, Creatinine, LVEF, Endocarditis</td>
</tr>
<tr>
<td>VTE and morbidity</td>
<td>20</td>
<td>EKG findings, Cancer, Sex, Previous VTE, Alternative diagnosis</td>
</tr>
</tbody>
</table>

De novo Models according to index condition/outcome pairing. BMI indicates body mass index; BUN, blood urea nitrogen; CAD, coronary artery disease; CHF, congestive heart failure; DM, diabetes mellitus; EKG, electrocardiogram; GCS, Glasgow coma scale; HDL, high-density lipoprotein; HR, heart rate; LVEF, left ventricular ejection fraction; NIHSS, National Institutes of Health Stroke Severity Scale; SBP systolic blood pressure; and VTE, venous thromboembolism.

*HR and sex seen with the same frequency for CAD and Mortality clinical prediction models.

Implementation.2-5 Model development should begin with a formal understanding of the clinical decision that might be support by prediction; from this the population and outcome selection should follow. In addition, investigators tend to focus on optimizing statistical performance, in particular model discrimination, an emphasis that may be misguided. The result is the landscape presented in this review, where models have proliferated without attention to the key efficacy question: what clinical decision can be supported with the probabilistic risk information provided by the CPM. We should remember that some models with relatively modest discrimination, but that nonetheless help inform critical therapeutic decisions, are among the most successful and have the highest potential for impact.10,11,13 New utility-based measures of model performance (such as decision curve analysis34) hold promise for focusing more attention on the decisional context in which models will be applied at an earlier stage of model development, but these measures are infrequently used and not widely understood.

The ultimate measure of CPMs is whether their use can improve clinical outcomes. Important although less significant goals might be to improve decision making as measured by appropriateness criteria, patient satisfaction, or decrease costs. The occasional examples of where CPMs help direct interventions toward patients most likely to benefit,35–39 all describe an essential feature of CPMs—that of informing actionable clinical decisions. Without this key focus CPMs will remain as tools on the sideline, able to inform prognosis but failing to live up to their potential.

Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database
Benjamin S. Wessler, Lana Lai YH, Whitney Kramer, Michael Cangelosi, Gowri Raman, Jennifer S. Lutz and David M. Kent

Circ Cardiovasc Qual Outcomes. published online July 7, 2015;
Circulation: Cardiovascular Quality and Outcomes is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-7705. Online ISSN: 1941-7713

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circoutcomes.ahajournals.org/content/early/2015/07/07/CIRCOU COMES.115.001693

Data Supplement (unedited) at:
http://circoutcomes.ahajournals.org/content/suppl/2015/07/07/CIRCOU COMES.115.001693.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Quality and Outcomes can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Quality and Outcomes is online at:
http://circoutcomes.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Appendix

Search strategy used to identify ASCVD and HF CPM

<table>
<thead>
<tr>
<th>Steps</th>
<th>Search Terms</th>
<th>Number of Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((predict$ adj1 model$) or (predict$ adj1 instrument$) or (predict$ adj1 score$) or (predict$ adj1 index)).mp.</td>
<td>29379</td>
</tr>
<tr>
<td>2</td>
<td>((prognos$ adj1 model$) or (prognos$ adj1 instrument$) or (prognos$ adj1 score$) or (prognos$ adj1 index)).mp.</td>
<td>5351</td>
</tr>
<tr>
<td>3</td>
<td>((risk adj1 model$) or (risk adj1 instrument$) or (risk adj1 score$) or (risk adj1 index) or (risk assessment model or risk assessment instrument or risk assessment score)).mp.</td>
<td>9714</td>
</tr>
<tr>
<td>4</td>
<td>atrial fib$.mp. or exp Atrial Fibrillation/ or exp coronary artery disease/ or exp coronary disease/ or exp myocardial infarction/ or Myocardial infarct$.mp. or exp Heart Failure, Congestive/ or exp myocardial ischemia/ or exp cardiovascular diseases/ or exp Cerebrovascular Accident/ or *heart failure/ or *stroke/ or *acute coronary syndrome/</td>
<td>1727747</td>
</tr>
<tr>
<td>5</td>
<td>1 or 2 or 3</td>
<td>43148</td>
</tr>
<tr>
<td>6</td>
<td>4 and 5</td>
<td>6052</td>
</tr>
<tr>
<td>7</td>
<td>limit 6 to yr="1990 -Current"</td>
<td>5720</td>
</tr>
</tbody>
</table>

Where current = May 15, 2012 publications